The exercises for this week will not count toward your grade, but you are highly encouraged to solve them all.

Exercise 1.

Let us define the \(\alpha \)-sub-level set of a function \(f : \mathbb{R}^n \to \mathbb{R} \) to be the set \(S_\alpha \) defined as \(\{ x : f(x) \leq \alpha \} \).

(i) Prove that if a function \(f \) is convex, then all its sub-level sets are convex sets.

(ii) Is it true that a function whose sub-level sets are all convex is necessarily convex?

Exercise 2.

Recall the definition of Laplacian \(L = BR^{-1}B^\top \).

(i) We can also define Laplacian as \(L \) defined as \(D - A \), where \(A \) is the weighted adjacency matrix, i.e.\(A(u, v) = 1/r(u, v) \), and \(D \) defined as \(\text{diag}_v \in V w(v) \) for \(w(v) := \sum_{(u,v) \in E} 1/r(u, v) \). Prove that these two definitions are equivalent.

(ii) Given a function on the vertices, \(x \in \mathbb{R}^V \), the Laplacian quadratic form is

\[
\sum_{(u,v) \in E} \frac{(x(u) - x(v))^2}{r(u,v)}.
\]

Prove the above equality and building on that, show that \(L \) is positive semi-definite.

(iii) What is the kernel of \(L \), which is denoted by \(\text{Ker}(L) \)?

Exercise 3.

(i) Prove that for a matrix \(A \) we have \(\text{im}(A) = \ker(A^\top)^\perp \), where \(\text{im}(A) \) denotes the image of \(A \) and \(\ker(A^\top)^\perp \) is the orthogonal complement to \(\ker(A^\top) \).

(ii) Building on part (i), prove that in our flow problem, when the graph is connected, an electrical flow \(f \) routing \(d \) exists if and only if \(1^\top d = 0 \).

Exercise 4.

Define the gradient of a multivariate function \(f : S \to \mathbb{R} \) for \(S \subseteq \mathbb{R}^n \). Then, prove that the system of linear equations \(Lx = d \) is the same as the system obtained by setting the gradient with respect to \(x \) of the function \(c(x) = \frac{1}{2}x^\top Lx - x^\top d \) equal to zero.
Exercise 5.

(i) Recall that the electrical flow and voltages satisfy $f^* = R^{-1}B^\top x^*$ and $Bf^* = d$. Prove that $(f^*)^\top Rf^* = (x^*)^\top Lx^*$.

(ii) Conclude that

$$
\max_{x \in \mathbb{R}^V} x^\top d - \frac{1}{2} x^\top L x = \min_{f \in \mathbb{R}^E} \frac{1}{2} \sum_e r(e)f(e)^2
$$

s.t. $Bf = d$.