
Advanced Graph Algorithms and Optimization Spring 2024

Course Introduction & Convex Optimization

R. Kyng & M. Probst Problem Set 1 — Monday, February 19th

These exercises will not count toward your grade, but you are encouraged to solve them all. This
exercise sheet contains exercises relating to lectures in Week 1.

To get feedback, you must hand in your solutions by 23.59 pm on February 29th. Both hand-written
and LATEX solutions are acceptable, but we will only attempt to read legible text.

Exercise 1

Let us define the α-sub-level set of a function f : Rn → R to be the set Sα
def
= {x : f(x ) ≤ α}.

(i) Prove that if a function f is convex, then all its sub-level sets are convex sets.

(ii) Is it true that a function whose sub-levels sets are all convex is necessarily convex?

Exercise 2

Recall the definition of Laplacian L = BR−1B⊤.

(i) We can also define Laplacian as L
def
= D − A, where A is the weighted adjacency matrix,

i.e. A(u, v) = 1/r(u, v), and D
def
= diagv∈V w(v) for w(v) :=

∑
(u,v)∈E 1/r(u, v). Prove that

these two definitions are equivalent.

(ii) Given a function on the vertices, x ∈ RV , the Laplacian quadratic form is

x⊤Lx =
∑

(u,v)∈E

(x (u)− x (v))2

r(u, v)
.

Prove the above equality and building on that, show that L is positive semi-definite.

(iii) What is the kernel of L, which is denoted by Ker(L)?

Exercise 3

(i) Prove that for a matrix A we have im(A) = ker(A⊤)⊥, where im(A) denotes the image of A
and ker(A⊤)⊥ is the orthogonal complement to ker(A⊤).

(ii) Building on part (i), prove that in a connected graph with resistances r ∈ RE
>0, an electrical

flow f routing demand d exists if and only if 1⊤d = 0.
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Exercise 4

We define1 the gradient of a multivariate function f : Rn → R as the function ∇f : Rn → Rn with
∇f(x )(i) = d

dx (i)f(x ), i.e. we consider f at a point x , treat the ith coordinate as a variable x (i),
take a derivative w.r.t. it and then evaluate it at the point x .

Now, prove that the system of linear equations Lx = d is the same as the system obtained by
setting the gradient of the function c(x ) = 1

2x
⊤Lx − x⊤d equal to zero.

Exercise 5

The goal of this exercise is to prove that

max
x∈RV

x⊤d − 1

2
x⊤Lx = min

f ∈RE

1

2

∑
e

r(e)f (e)2

s.t. Bf = d .

We’ll break that down into a few steps.

Let f ∈ RE be an arbitrary flow that satisfies Bf = d , i.e. it routes the demand d . Let x ∈ RV be
arbitrary voltages. Arbitrary means you cannot assume these are the electrical flow and voltages.

(i) Prove that

1

2

∑
e

r(e)f (e)2 = x⊤d −

 ∑
(u,v)∈E

(x (u)− x (v))(f (u, v))− 1

2
r(u, v)f (u, v)2


Hint: use that x⊤(Bf − d) = 0.

(ii) Prove that

(x (u)− x (v))(f (u, v))− 1

2
r(u, v)f (u, v)2 ≤ 1

2

(x (u)− x (v))2

r(u, v)
.

(iii) Conclude that 1
2f

⊤Rf ≥ x⊤d − 1
2x

⊤Lx .

(iv) Assume we are given x̃ and f̃ such that

Lx̃ = d and f̃ = R−1B⊤x̃

Prove that Bf̃ = d and

x̃⊤d − 1

2
x̃⊤Lx̃ =

1

2
f̃
⊤
Rf̃ .

(v) Show

x̃ ∈ argmax
x∈RV

x⊤d − 1

2
x⊤Lx

and

f̃ ∈ argmin
f ∈RE

1

2

∑
e

r(e)f (e)2

s.t. Bf = d .
1We will give a more formal definition of Frechet derivatives later, which is formally what we mean by ‘gradient’.
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Exercise 6

Recall that the following theorem gives us a sufficient (though not necessary) condition for opti-
mality.

Theorem (Extreme Value Theorem). Let f : Rn → R be a continuous function and F ⊆ Rn be
nonempty, bounded, and closed. Then, the optimization problem min f(x ) : x ∈ F has an optimal
solution.

Prove the above theorem. You might use the following two theorems.

Theorem (Bolzano-Weierstrass). Every bounded sequence in Rn has a convergent subsequence.

Theorem (Boundedness Theorem). Let f : Rn → R be a continuous function and F ⊆ Rn be
nonempty, bounded, and closed. Then f is bounded on F .

Exercise 7

Prove or sketch a proof of Taylor’s Theorem.

Theorem (Taylor’s Theorem, multivariate first-order remainder form). If f : S → R is continu-
ously differentiable over [x ,y ], then for some z ∈ [x ,y ], we have f(y) = f(x ) +∇f(z )⊤(y − x ).

Exercise 8

Let f1(x ), · · · , fk(x ) be a collection of convex functions all with the same domain and define

f(x )
def
= max1≤i≤k fi(x ). Prove that f(x ) is convex.

Exercise 9

Assume that f(x, y) is a convex function and S is a convex non-empty set. Prove that

g(x) = inf
y∈S

f(x, y)

is convex, provided g(x) > −∞ for all x.

Exercise 10

For each function below, determine whether it is convex or not.

1. f(x) = |x|6 on x ∈ R

2. f(x) = exp(x) on x ∈ (0,∞)

3. f(x, y) =
√
x+ y on (x, y) ∈ (0, 1)× (0, 1)

4. f(x, y) = xy on (x, y) ∈ (−1, 1)× (−1, 1)
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Bonus Exercise 11: Jensen’s Inequality

This exercise will teach you about Jensen’s inequality, one of the most important inequalities that
we use when studying convex functions.

1. Assume that S ⊆ Rn is a convex set and that the function f : S → R is convex. Suppose
that x 1, · · · ,xn ∈ S and θ1, · · · , θn ≥ 0 with θ1 + · · ·+ θn = 1. Prove that

f(θ1x 1 + · · ·+ θnxn) ≤ θ1f(x 1) + · · ·+ θnf(xn).

Remark. This is typically known as Jensen’s inequality and can be extended to infinite sums.
If D is a probability distribution on S, and X ∼ D, then f(E [X ]) ≤ E [f(X )] whenever both
integrals are finite.

2. Prove that (
∏n

i=1 xi)
1
n ≤ 1

n

∑n
i=1 xi.

3. Prove that 1
1
n

∑n
i=1

1
xi

≤ (
∏n

i=1 xi)
1
n .
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