
Advanced Graph Algorithms and Optimization Spring 2024

Course Introduction & Convex Optimization

R. Kyng & M. Probst Problem Set 2 — Monday, February 26th

These exercises will not count toward your grade, but you are encouraged to solve them all. This
exercise sheet contains exercises relating to lectures in Week 2.

To get feedback, you must hand in your solutions by 23.59 pm on March 7th. Both hand-written
and LATEX solutions are acceptable, but we will only attempt to read legible text.

Exercise 1

Prove that if a matrix A ∈ Rn×n is symmetric, then ∥A∥ = max(|λmax(A)| , |λmin(A)|) and give
an example of a non-symmetric matrix for which this is not true.

Exercise 2

Consider a twice continuously differentiable function f : S → R, where S ⊂ Rn is a convex open
set. Prove that f is β-gradient Lipschitz if and only if for all x ∈ S we have ∥Hf (x )∥ ≤ β.

Exercise 3

Prove that when running Gradient Descent, ∥x i − x ∗∥2 ≤ ∥x 0 − x ∗∥2 for all i.

Exercise 4

Prove the following theorem.

Theorem. Let f : Rn → R be an β-gradient Lipschitz, convex function. Let x 0 be a given starting
point, and let x ∗ ∈ argminx∈Rn f(x ) be a minimizer of f . The Gradient Descent algorithm given
by x i+1 = x i − 1

β∇f(x i) ensures that the kth iterate satisfies

f(x k)− f(x ∗) ≤
2β ∥x 0 − x ∗∥22

k + 1
.

Hint: do an induction on 1/gapi.

Exercise 5

1. For each of the following functions answer these questions:

• Is the function convex?
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• Is the function β-gradient Lipschitz for some β?

• If the function is β-gradient Lipschitz give an upper bound on β – the bound should be
within a factor 4 of the true value.

(a) f(x) = |x|1.5 on x ∈ R
(b) f(x) = exp(x) on x ∈ R
(c) f(x) = exp(x) on x ∈ (−1, 1)

(d) f(x, y) =
√
x+ y on (x, y) ∈ (0, 1)× (0, 1).

(e) f(x, y) =
√
x+ y on (x, y) ∈ (1/2, 1)× (1/2, 1).

(f) f(x, y) =
√

x2 + y2 on (x, y) ∈ R2.

Bonus Exercise 6: Strongly Convex Functions

This longer exercise will teach you about strongly convex functions. In it, you will show that, with
a small tweak, gradient descent quickly converges to a highly accurate solutions on these functions.

Let f : Rn → R be a convex function. Assume f is twice continuously (Frechét) differentiable and
that its first and second (Frechét) derivatives are integrable (basically, don’t worry that weird stuff
is happening with the derivatives). Assume that for all x , we have for some constant µ > 0, that
λmin(Hf (x )) ≥ µ. When this holds, we say that f is µ-strongly convex.

Part A. Prove that for all x ,y ∈ Rn

f(y) ≥ f(x ) +∇f(x )⊤(y − x ) +
µ

2
∥y − x∥22 .

Part B. Prove that there is value L ∈ R such that for all x ∈ Rn, we have f(x ) ≥ L. In other
words, the function is not unbounded below.

Part C. Prove that f is strictly convex as per Definition 3.2.8 in Chapter 3. Prove also that the
minimizer x ∗ ∈ argminx∈Rn f(x ) of f is unique.

Part D. Let x 0 be a given starting point and x ∗ be the minimizer of f . Suppose we have
an algorithm DecentDescent which takes a starting point x 0, and a step count t ∈ N.
DecentDescent(x 0, t) runs for t steps and returns x̃ ∈ Rn such that

f(x̃ )− f(x ∗) ≤
γ ∥x 0 − x ∗∥22

t+ 1

where γ > 0 is a positive number.

Assume that the cost of running DecentDescent for t steps is t. Explain how, with a total cost
of at most 8γ

µ log(∥x 0 − x ∗∥2 /δ), we can produce a point x̂ ∈ Rn such that ∥x̂ − x ∗∥2 ≤ δ for
δ > 0.
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Part E. Consider a function h : Rn → R which is both µ-strongly convex and β-gradient Lipschitz.
Give an algorithm that returns x ′ with

h(x ′)− h(x ∗) ≤ ϵ

by computing the gradient of h at at most 32β
µ log(2β ∥x 0 − x ∗∥22 /ϵ) points.
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