
Advanced Graph Algorithms and Optimization Spring 2024

Spectral Graph Theory

R. Kyng & M. Probst Problem Set 3 — Monday, March 4

These exercises will not count toward your grade, but you are encouraged to solve them all. This
exercise sheet contains exercises relating to lectures in Weeks 3. We encourage you to start the
exercises early so you have time to get through everything.

To get feedback, you must hand in your solutions by 23:59 on March 14th. Both hand-written and
LATEX solutions are acceptable, but we will only attempt to read legible text.

Exercise 1

Let Pn be the path from vertex 1 to n and G1,n be the graph with only the edge between vertex 1
and n. Furthermore, assume that the edge between vertex i and i + 1 has positive weight wi for
1 ≤ i ≤ n− 1. Prove that

G1,n ⪯

(
n−1∑
i=1

1

wi

)
n−1∑
i=1

wiGi,i+1.

Exercise 2

In Chapter 4, we proved that

λ2(Tn) ≥
1

2n log2 n
.

Improve this bound to λ2(Tn) ≥ 1/cn for some constant c > 0. You may assume n = 2d+1 − 1 for
some integer d.

Hint: Use the result of previous exercise.

Exercise 3

Find the conductance ϕ ∈ (0, 1] for the following graphs:

1. the complete graph Kn over n vertices.

2. the path graph Pn over n vertices.

Exercise 4

Show that λ2(L) ̸= 0 if and only if G is connected. Argue that the same applies for N .
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Exercise 5

A quite related concept to conductance is sparsity : we define the sparsity of a cut ∅ ⊂ S ⊂ V by

σ(S) =
|E(S, V \ S)|

min{|S|, |V \ S|}
.

An alternative version of Cheeger’s inequality relates the second eigenvalue of L (not N ) to the
sparsity of the graph σ(G) = min∅⊂S⊂V σ(S):

λ2(L)

2
≤ σ(G) ≤

√
2dmax · λ2(L)

where dmax is the maximum degree of any vertex in the graph.

Prove the lower bound on σ(G), i.e. that λ2(L)
2 ≤ σ(G).

Hint: Follow closely the proof of of the lower bound in Cheeger’s inequality and try to understand
what has to be adapted.

Exercise 6

In the lecture, we skipped various steps in the proof of Cheeger’s inequality. Show that

1. N is symmetric and in fact PSD. We recommend to prove this by proving the following
stronger statement: for any matrix A that is PSD, and any matrix C , we have that C⊤AC
is PSD.

2. Show that the normalization of z in the upper bound proof of Cheeger’s inequality can only

make the ratio we are interested in smaller. I.e. prove that z⊤Lz
z⊤Dz

≥ z⊤
scLz sc

z⊤
scDz sc

.

Hint: Argue first about the transformation of z to z c. One way of relating their denominator
is by minimizing over all choices of z c for c. For z c and z sc you should be able to prove an
equality.

3. We have also skipped proving that τ is sampled according to a valid probability distribution:
Show that

∫
τ P[τ = ℓ] dτ = 1.

Hint: Recall the properties of z sc.

4. Show that

Eτ [|E(Sτ , V \ Sτ )|] ≤
∑

{i,j}∈E

|z sc(i)− z sc(j)| · (|z sc(i)|+ |z sc(j)|)

by concluding the argument in the proof.

5. Standard Probabilistic Method: Consider a random variable X with a discrete distribution
and let Ω be the sample space. Argue that there exists an ω ∈ Ω with X(ω) ≥ E[X].

Hint: Recall the definition of expectation of a discrete random variable.
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6. Using the probabilisitic method for Cheeger’s Inequality: recall that in our proof, we want

to argue that
Eτ [1⊤

S L1S]
Eτ [1⊤

SD1S]
≤
√
2 · z⊤

scLz sc

z⊤
scDz sc

implies that there exists an S with
1⊤
S L1S

1⊤
SD1S

≤√
2 · z⊤

scLz sc

z⊤
scDz sc

. There are two ways to prove this (feel free to choose just one):

(a) you can prove this claim by considering Eτ

[
1⊤SL1S

]
≤
√

2 · z⊤
scLz sc

z⊤
scDz sc

· Eτ

[
1⊤SD1S

]
. Use

only linearity of expectation to obtain an expression with a single Eτ and apply the
probabilistic method, or

(b) you can prove that for any two discrete random variables X,Y > 0 with the same
distribution, we have that there exists an ω ∈ Ω with

X(ω)

Y (ω)
≤ E [X]

E [Y ]
.
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