These exercises will not count toward your grade, but you are encouraged to solve them all. This exercise sheet contains exercises relating to lectures in Weeks 3 . We encourage you to start the exercises early so you have time to get through everything.

To get feedback, you must hand in your solutions by 23:59 on March 14th. Both hand-written and $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ solutions are acceptable, but we will only attempt to read legible text.

Exercise 1

Let P_{n} be the path from vertex 1 to n and $G_{1, n}$ be the graph with only the edge between vertex 1 and n. Furthermore, assume that the edge between vertex i and $i+1$ has positive weight w_{i} for $1 \leq i \leq n-1$. Prove that

$$
G_{1, n} \preceq\left(\sum_{i=1}^{n-1} \frac{1}{w_{i}}\right) \sum_{i=1}^{n-1} w_{i} G_{i, i+1} .
$$

Exercise 2

In Chapter 4, we proved that

$$
\lambda_{2}\left(T_{n}\right) \geq \frac{1}{2 n \log _{2} n} .
$$

Improve this bound to $\lambda_{2}\left(T_{n}\right) \geq 1 / c n$ for some constant $c>0$. You may assume $n=2^{d+1}-1$ for some integer d.

Hint: Use the result of previous exercise.

Exercise 3

Find the conductance $\phi \in(0,1]$ for the following graphs:

1. the complete graph K_{n} over n vertices.
2. the path graph P_{n} over n vertices.

Exercise 4

Show that $\lambda_{2}(\boldsymbol{L}) \neq 0$ if and only if G is connected. Argue that the same applies for \boldsymbol{N}.

Exercise 5

A quite related concept to conductance is sparsity: we define the sparsity of a cut $\emptyset \subset S \subset V$ by

$$
\sigma(S)=\frac{|E(S, V \backslash S)|}{\min \{|S|,|V \backslash S|\}}
$$

An alternative version of Cheeger's inequality relates the second eigenvalue of \boldsymbol{L} (not \boldsymbol{N}) to the sparsity of the graph $\sigma(G)=\min _{\emptyset \subset S \subset V} \sigma(S)$:

$$
\frac{\lambda_{2}(\boldsymbol{L})}{2} \leq \sigma(G) \leq \sqrt{2 d_{\max } \cdot \lambda_{2}(\boldsymbol{L})}
$$

where $d_{\max }$ is the maximum degree of any vertex in the graph.
Prove the lower bound on $\sigma(G)$, i.e. that $\frac{\lambda_{2}(\boldsymbol{L})}{2} \leq \sigma(G)$.
Hint: Follow closely the proof of of the lower bound in Cheeger's inequality and try to understand what has to be adapted.

Exercise 6

In the lecture, we skipped various steps in the proof of Cheeger's inequality. Show that

1. \boldsymbol{N} is symmetric and in fact PSD. We recommend to prove this by proving the following stronger statement: for any matrix \boldsymbol{A} that is PSD , and any matrix \boldsymbol{C}, we have that $\boldsymbol{C}^{\top} \boldsymbol{A} \boldsymbol{C}$ is PSD.
2. Show that the normalization of \boldsymbol{z} in the upper bound proof of Cheeger's inequality can only make the ratio we are interested in smaller. I.e. prove that $\frac{z^{\top} L z}{z^{\top} D z} \geq \frac{z_{s c}^{\top} L z_{s c}}{z_{s c} D z_{s c}}$.
Hint: Argue first about the transformation of \boldsymbol{z} to \boldsymbol{z}_{c}. One way of relating their denominator is by minimizing over all choices of \boldsymbol{z}_{c} for c. For \boldsymbol{z}_{c} and $\boldsymbol{z}_{s c}$ you should be able to prove an equality.
3. We have also skipped proving that τ is sampled according to a valid probability distribution: Show that $\int_{\tau} \mathbb{P}[\tau=\ell] d \tau=1$.
Hint: Recall the properties of $\boldsymbol{z}_{s c}$.
4. Show that

$$
\mathbb{E}_{\tau}\left[\left|E\left(S_{\tau}, V \backslash S_{\tau}\right)\right|\right] \leq \sum_{\{i, j\} \in E}\left|\boldsymbol{z}_{s c}(i)-\boldsymbol{z}_{s c}(j)\right| \cdot\left(\left|\boldsymbol{z}_{s c}(i)\right|+\left|\boldsymbol{z}_{s c}(j)\right|\right)
$$

by concluding the argument in the proof.
5. Standard Probabilistic Method: Consider a random variable X with a discrete distribution and let Ω be the sample space. Argue that there exists an $\omega \in \Omega$ with $X(\omega) \geq \mathbb{E}[X]$.
Hint: Recall the definition of expectation of a discrete random variable.
6. Using the probabilisitic method for Cheeger's Inequality: recall that in our proof, we want to argue that $\frac{\mathbb{E}_{\tau}\left[\mathbf{1}_{S}^{\top} \boldsymbol{L} \mathbf{1}_{S}\right]}{\mathbb{E}_{\tau}\left[\mathbf{1}_{S}^{\top} \boldsymbol{D} \mathbf{1}_{S}\right]} \leq \sqrt{2 \cdot \frac{\boldsymbol{z}_{s}^{\top} \boldsymbol{L} z_{s c}}{\boldsymbol{z}_{s c} \boldsymbol{D} z_{s c}}}$ implies that there exists an S with $\frac{\mathbf{1}_{S}^{\top} \boldsymbol{L} \mathbf{1}_{S}}{\mathbf{1}_{S}^{\top} \boldsymbol{D} \mathbf{1}_{S}} \leq$ $\sqrt{2 \cdot \frac{z_{s c}^{\top} L z_{s c}}{z_{s c} \boldsymbol{D} z_{s c}}}$. There are two ways to prove this (feel free to choose just one):
(a) you can prove this claim by considering $\mathbb{E}_{\tau}\left[\mathbf{1}_{S}^{\top} \boldsymbol{L} \mathbf{1}_{S}\right] \leq \sqrt{2 \cdot \frac{\boldsymbol{z}_{s c}^{\top} \boldsymbol{L} z_{s c}}{\boldsymbol{z}_{s c} \boldsymbol{D} \boldsymbol{z}_{s c}}} \cdot \mathbb{E}_{\tau}\left[\mathbf{1}_{S}^{\top} \boldsymbol{D} \mathbf{1}_{S}\right]$. Use only linearity of expectation to obtain an expression with a single \mathbb{E}_{τ} and apply the probabilistic method, or
(b) you can prove that for any two discrete random variables $X, Y>0$ with the same distribution, we have that there exists an $\omega \in \Omega$ with

$$
\frac{X(\omega)}{Y(\omega)} \leq \frac{\mathbb{E}[X]}{\mathbb{E}[Y]}
$$

