
Advanced Graph Algorithms and Optimization Spring 2024

Spectral Graph Theory

R. Kyng & M. Probst Gutenberg Problem Set 5— Wednesday, March 18th

The exercises for this week will not count toward your grade, but you are highly encouraged to
solve them all. This exercise sheet has exercises related to week 5. We encourage you to start early
so you have time to go through everything.

To get feedback, you must hand in your solutions by 23:59 on March 28. Both hand-written and
LATEX solutions are acceptable, but we will only attempt to read legible text.

Notation

Througout the following exercises, we will use the following notation:

• Sn is the set of symmetric real matrices n× n matrices.

• Sn
+ is the set of positive semi-definite n× n matrices.

• Sn
++ is the set of positive definite n× n matrices.

Whenever we say a matrix is positive semi-definite or positive definite, we require it to be real and
symmetric.

Exercise 1

1. Show that there exist two matrices A,B ∈ Sn
++ such that A ⪯ B but A2 ⪯̸ B2.

2. Let A,B ∈ Sn
++, and assume A ⪯ B . Prove that B−1 ⪯ A−1.

Hint: It might help to first prove that for a matrix C ∈ Rn×n, we have CAC⊤ ⪯ CBC⊤.

Solution

1. Suppose that

A :=

[
26 5
5 2

]
and

B :=

[
51 0
0 3

]
.

Consider an arbitrary vector x ∈ R2. Then, we have that

x⊤Ax = 26x (1)2 + 10x (1)x (2) + 2x (2)2.
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and
x⊤Bx = 51x (1)2 + 3x (2)2.

Therefore, we get

x⊤Bx − x⊤Ax = 25x (1)2 + x (2)2 − 10x (1)x (2) = (5x (1)− x (2))2 ≥ 0

which implies that A ⪯ B .

Furthermore, A,B ∈ Sn
++ because for any x ∈ R2 \ {0},

x⊤Ax = 26x (1)2 + 10x (1)x (2) + 2x (2)2 = (5x (1) + x (2))2 + x (1)2 + x (2)2 > 0.

On the other hand, for x =

(
0
1

)
we have x⊤A2x = 29 and x⊤B2x = 9 which implies that

A2 ⪯̸ B2.

2. Let A,B ∈ Sn
++, and assume that A ⪯ B . Let us first prove that for any C ∈ Rn×n,

CAC⊤ ⪯ CBC⊤. (1)

For x ∈ Rn, we let y = C⊤x . Then, we get

x⊤
(
CAC⊤ −CBC⊤

)
x =

(
C⊤x

)⊤
(A−B)

(
C⊤x

)
= y⊤ (A−B)y ≤ 0.

Now, we prove that B−1 ⪯ A−1. We know that B− 1
2 exists and 0 ≺ B− 1

2 since 0 ≺ B . By
applying Equation (1), we have

B− 1
2AB− 1

2 ⪯ B− 1
2BB− 1

2 = I .

Furthermore, since 0 ≺ A, we get(
B− 1

2AB− 1
2

)−1
= B

1
2A−1B

1
2 ⪰ I .

By applying Equation (1) another time, we conclude that

B− 1
2B

1
2A−1B

1
2B− 1

2 ⪰ B− 1
2 IB− 1

2 ⇒ A−1 ⪰ B−1.

Exercise 2

Suppose that a weighted graph G is a ϕ-expander, with Laplacian L = D −A.

1. Prove that for any z ⊥ 1,
z⊤L†z ≤ 2ϕ−2z⊤D−1z .

Hint: Use the result from Exercise 5 in Problem Set 4.

2. Use the statement above to give an upper bound on the effective resistance between any two
vertices u, v of G.

2



Solution.

1. Note that the null space of D−1/2LD−1/2 is spanned by D1/21, as 1 spans the null space of
L. Cheeger’s inequality gives that for y⊥D1/21,

y⊤D−1/2LD−1/2y ≥ 0.5ϕ2y⊤y .

We let Q denote the projection orthogonal to D1/21. We can then equivalently write

D−1/2LD−1/2 ⪰ 0.5ϕ2Q.

From this we conclude that,

(D−1/2LD−1/2)† ⪯ 2ϕ−2Q†

as A ⪰ B implies A† ⪯ B† when A and B have the same null space. Hence by using Exercise
12 from problem set 2 and Q = Q†, we then get

QD1/2L†D1/2Q ⪯ 2ϕ−2Q.

This we can rewrite as for all y⊥D1/21.

y⊤D1/2L†D1/2y ≤ 2ϕ−2y⊤y .

Substituting z = D1/2y changes the constraint to D−1/2z⊥D1/21 i.e. z⊥1. Thus we have
that for all z⊥1.

z⊤L†z ⪯ 2ϕ−2z⊤D−1z .

2. If z = eu − ev, then z ⊥ 1, so

z⊤L†z ≤ 2ϕ−2z⊤D−1z = 2ϕ−2

(
1

d(u)
+

1

d(v)

)

Exercise 3

In this exercise, we want you to complete the proof of Theorem 8.3.3 in Chapter 8. Refer to the
lectures notes for definitions of the terms used here.

1. Prove that Equation (8.4) is satisfied, i.e. that for all edges e ∈ E we have ∥X e∥ ≤ 1
α .

2. Prove that Equation (8.5) is satisfied, i.e. that
∥∥∑

e E
[
X 2

e

]∥∥ ≤ 1
α .

3. Explain how we can use a scalar Chernoff bound to prove that
∣∣∣Ẽ∣∣∣ ≤ O(ϵ−2 log(n/δ)n) with

probability at least 1− δ/2. You may pick any constant that suits you to establish the O(·)
bound.
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Solution.

1. We recall that

Y e =

{
w(e)
pe

beb
⊤
e with probability pe

0 otherwise

for pe = min(1, α
∥∥Φ(w(e)beb

⊤
e )

∥∥) and Φ(A) = L+/2AL+/2. Furthermore, we have X e =
Φ(Y e)− E [Φ(Y e)]. Thus,

X e =

{
( 1
pe

− 1)Φ(w(e)beb
⊤
e ) with probability pe

−Φ(w(e)beb
⊤
e ) otherwise.

Note that when pe = 1, we have X e = 0 always. So we only need to bound the norm when
pe = α

∥∥Φ(w(e)beb
⊤
e )

∥∥. Therefore, we can compute

∥X e∥ ≤ max{ 1

pe
− 1, 1}

∥∥∥Φ(w(e)beb
⊤
e )

∥∥∥ ≤ 1

pe

∥∥∥Φ(w(e)beb
⊤
e )

∥∥∥ =
1

α
.

2. Note that
∑

e E
[
X 2

e

]
⪰ 0, because each term is PSD. So we only need to give an upper bound

to bound the norm. Let us upper-bound E
[
X 2

e

]
. We can focus on pe = α

∥∥Φ(w(e)beb
⊤
e )

∥∥,
because in the other case X e is identically zero. We have that

E
[
X 2

e

]
=

(
1

pe
− 1

)
Φ
(
w (e) beb

⊤
e

)2

⪯
(

1

pe
− 1

)∥∥∥Φ(
w(e)beb

⊤
e

)∥∥∥Φ(
w(e)beb

⊤
e

)
⪯ 1

α
Φ
(
w(e)beb

⊤
e

)
.

Using the fact that ∥Φ(L)∥ ≤ 1, we can conclude∥∥∥∥∥∑
e

E
[
X 2

e

]∥∥∥∥∥ ≤
∥∥∥∥ 1αΦ(L)

∥∥∥∥ ≤ 1

α
.

3. For each edge e, let Bernoulli random variable Ze be 1 with probability pe. Then,
∣∣∣Ẽ∣∣∣ = ∑

e Ze

is the sum of |E| independent Bernoulli random variables. Let us define µ′ = 40ϵ−2n log(n/δ).

We know that E
[∣∣∣Ẽ∣∣∣] ≤ µ′. Therefore, by applying the Chernoff bound we get

Pr
[∣∣∣Ẽ∣∣∣ ≥ 2µ′

]
≤ Pr

[∣∣∣Ẽ∣∣∣ ≥ 2E
[∣∣∣Ẽ∣∣∣]]

≤ exp

−
E
[∣∣∣Ẽ∣∣∣]
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≤ exp

(
−cϵ−2n log(n/δ)

4

)

=

(
δ

n

) cϵ−2n
4

≤ δ

2
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where we used that we can lower bound E
[∣∣∣Ẽ∣∣∣] by cϵ−2n log(n/δ) for some constant c > 0.
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