The exercises for this week will not count toward your grade, but you are highly encouraged to solve them all. This exercise sheet has exercises related to week 6 . We encourage you to start early so you have time to go through everything.
To get feedback, you must hand in your solutions by 23:59 on April 18. Both hand-written and LATEX solutions are acceptable, but we will only attempt to read legible text.

Notation

Througout the following exercises, we will use the following notation:

- S^{n} is the set of symmetric real $n \times n$ matrices.
- S_{+}^{n} is the set of positive semi-definite $n \times n$ matrices.
- S_{++}^{n} is the set of positive definite $n \times n$ matrices.

Whenever we say a matrix is positive semi-definite or positive definite, we require it to be real and symmetric.

Exercise 1

Consider $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{v}, \boldsymbol{u} \in \mathbb{R}^{n}$.

1. Assume that $\boldsymbol{I}+\boldsymbol{u} \boldsymbol{v}^{\top}$ is invertible. Determine c such that

$$
\left(I+\boldsymbol{u} \boldsymbol{v}^{\top}\right)^{-1}=\boldsymbol{I}-\frac{\boldsymbol{u} \boldsymbol{v}^{\top}}{c}
$$

2. Assume that both \boldsymbol{A} and $\boldsymbol{A}+\boldsymbol{u} \boldsymbol{v}^{\top}$ are invertible. Prove that

$$
\left(\boldsymbol{A}+\boldsymbol{u} \boldsymbol{v}^{\top}\right)^{-1}=\boldsymbol{A}^{-1}-\frac{\boldsymbol{A}^{-1} \boldsymbol{u} \boldsymbol{v}^{\top} \boldsymbol{A}^{-1}}{1+\boldsymbol{v}^{\top} \boldsymbol{A}^{-1} \boldsymbol{u}}
$$

Hint: You might use that $(\boldsymbol{B} \boldsymbol{C})^{-1}=\boldsymbol{C}^{-1} \boldsymbol{B}^{-1}$ for two invertible matrices $\boldsymbol{B}, \boldsymbol{C} \in \mathbb{R}^{n \times n}$.

Exercise 2

Consider a matrix function $f: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$. For $\boldsymbol{X}, \boldsymbol{Y} \in \mathbb{R}^{n \times n}$, we define

$$
D f(\boldsymbol{X})[\boldsymbol{Y}]=\left.\frac{\partial}{\partial t}\right|_{t=0} f(\boldsymbol{X}+t \boldsymbol{Y})
$$

Remark. Note that if we think of \boldsymbol{X} and \boldsymbol{Y} each as a vector of numbers, then this is the (matrixvalued) directional derivative of f at \boldsymbol{X} in the direction of \boldsymbol{Y}.

Consider $f(\boldsymbol{X})=\boldsymbol{X}^{-1}$ for an invertible matrix $\boldsymbol{X} \in \mathbb{R}^{n \times n}$. Prove that

$$
D f(\boldsymbol{X})[\boldsymbol{Y}]=-\boldsymbol{X}^{-1} \boldsymbol{Y} \boldsymbol{X}^{-1} .
$$

Hint: You might need to use Exercise 1.

Exercise 3

1. Consider $\boldsymbol{A} \in S_{++}^{n}$ and matrix $\boldsymbol{\Delta} \in S_{+}^{n}$. Prove that $(\boldsymbol{A}+\boldsymbol{\Delta})^{-1} \preceq \boldsymbol{A}^{-1}$.
2. Let T be a convex set. We say that a function $f: T \rightarrow \mathbb{R}^{n \times n}$, is operator convex if for any two matrices $\boldsymbol{A}, \boldsymbol{B} \in T$ and any $\theta \in[0,1]$

$$
f(\theta \boldsymbol{X}+(1-\theta) \boldsymbol{Y}) \preceq \theta f(\boldsymbol{X})+(1-\theta) f(\boldsymbol{Y}) .
$$

Prove that $f(\boldsymbol{X})=\boldsymbol{X}^{-1}$ is operator convex over the set $T=S_{++}^{n}$.
Hint: You could first show that operator convexity is implied by the second directional derivative $D^{2} f(\boldsymbol{X})[\boldsymbol{Y}, \boldsymbol{Y}]$ being positive semi-definite for all $\boldsymbol{Y} \in S^{n}$ and $\boldsymbol{X} \in S_{++}^{n}$.

Exercise 4.A: Convergence of Ford-Fulkerson

Show that the Ford-Fulkerson algorithm may not terminate; moreover, it may converge toward a value not equal to the value of the maximum flow.

Hint: You might use the graph below with the given capacities, where $r=\frac{\sqrt{5}-1}{2}$ (which implies that $\left.r^{2}=1-r\right)$.

Warning: This exercise is quite unpleasant - you may want to focus on the other ones, and only do this one if you have time to spare.

Exercise 4.B: Iterative Refinement for Maximum Flow

Suppose we have an algorithm FlowRefine, which given a maximum flow instance $G=(V, E, c)$ with source $s \in V$ and $\operatorname{sink} t \in V$ returns a feasible s - t flow $\tilde{\boldsymbol{f}}$, i.e. $\boldsymbol{B} \tilde{\boldsymbol{f}}=F\left(-\boldsymbol{\chi}_{s}+\boldsymbol{\chi}_{t}\right)$ for some F, and $\mathbf{0} \leq \tilde{\boldsymbol{f}} \leq \boldsymbol{c}$, and $\tilde{\boldsymbol{f}}$ is guaranteed to route at least half the maximum flow, i.e. $F=\operatorname{val}(\tilde{\boldsymbol{f}}) \geq 0.5 \operatorname{val}\left(\boldsymbol{f}^{*}\right)$.

Suppose that the running time of FlowRefine is $O\left(|E|^{c}\right)$ for some constant $c \geq 1$.
Explain how we can use FlowRefine to find a flow $\hat{\boldsymbol{f}}$ that routes at least $(1-\epsilon) \operatorname{val}\left(\boldsymbol{f}^{*}\right)$ in time $O\left(|E|^{c} \log (1 / \epsilon)\right)$.

Exercise 5

Maximum flow is often introduced as a s - t problem in the following manner: Given a directed and capacitated graph $G=(V, E, \boldsymbol{c})$ with n vertices and m edges (assume integer capacities between 1 and n^{10}) and edge-vertex incidence matrix \boldsymbol{B}, a source $s \in V$ and a $\operatorname{sink} t \in V$, computes the flow \boldsymbol{f} that respects the capacities $\mathbf{0} \leq \boldsymbol{f} \leq \boldsymbol{c}$, satisfies flow conservation $(\boldsymbol{B} \boldsymbol{f})(v)=$ for $v \in V \backslash\{s, t\}$ and maximizes F where $(\boldsymbol{B} \boldsymbol{f})(s)=-F$ and $(\boldsymbol{B} \boldsymbol{f})(t)=F$.

1. Show that such an algorithm can be used to solve the maximum flow problem as introduced in the lecture, i.e. given a integral demand vector $\boldsymbol{d} \perp \mathbf{1}$ with entries between $-n^{10}$ and n^{10}, compute a flow that satisfies

$$
\begin{equation*}
\min _{\mathbf{0} \leq f, \boldsymbol{B} f=\boldsymbol{d}}\left\|\operatorname{diag}(\boldsymbol{c})^{-1} \boldsymbol{f}\right\|_{\infty} . \tag{1}
\end{equation*}
$$

2. Show that the converse is also true, i.e. that a solution to (1) can be used to solve the s - t maximum flow problem.

Hint: There is always an integral maximum flow \boldsymbol{f} in this setting.

