
Advanced Graph Algorithms and Optimization Spring 2024

Spectral Graph Theory

R. Kyng & M. Probst Gutenberg Problem Set 6— Monday, April 8th

The exercises for this week will not count toward your grade, but you are highly encouraged to
solve them all. This exercise sheet has exercises related to week 6. We encourage you to start early
so you have time to go through everything.

To get feedback, you must hand in your solutions by 23:59 on April 18. Both hand-written and
LATEX solutions are acceptable, but we will only attempt to read legible text.

Notation

Througout the following exercises, we will use the following notation:

• Sn is the set of symmetric real n× n matrices.

• Sn
+ is the set of positive semi-definite n× n matrices.

• Sn
++ is the set of positive definite n× n matrices.

Whenever we say a matrix is positive semi-definite or positive definite, we require it to be real and
symmetric.

Exercise 1

Consider A ∈ Rn×n and v ,u ∈ Rn.

1. Assume that I + uv⊤ is invertible. Determine c such that(
I + uv⊤

)−1
= I − uv⊤

c
.

2. Assume that both A and A+ uv⊤ are invertible. Prove that(
A+ uv⊤

)−1
= A−1 − A−1uv⊤A−1

1 + v⊤A−1u
.

Hint: You might use that (BC )−1 = C−1B−1 for two invertible matrices B ,C ∈ Rn×n.

Solution.

1. We want to find c such that

I =

(
I − uv⊤

c

)(
I + uv⊤

)
.
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This is equivalent to

I = I + uv⊤ − uv⊤

c
− uv⊤

c
uv⊤.

Notice that uv⊤uv⊤ = u(v⊤u)v⊤ = (v⊤u)uv⊤. Thus, the above equation holds if and
only if

1− 1

c
− v⊤u

c
= 0.

Therefore, we set c = 1 + v⊤u and conclude hat(
I + uv⊤

)−1
= I − uv⊤

1 + v⊤u
. (1)

2. We have that (
A+ uv⊤

)−1
=

(
A

(
I +A−1uv⊤

))−1
.

By applying the fact that (BC )−1 = C−1B−1 for two invertible matrices B ,C ∈ Rn×n and
then using Equation (1), we get(

A+ uv⊤
)−1

=
(
I +A−1uv⊤

)−1
A−1

=

(
I − A−1uv⊤

1 + v⊤A−1u

)
A−1

= A−1 − A−1uv⊤A−1

1 + v⊤A−1u
.

This equality is known as the Sherman-Morrison formula.

Exercise 2

Consider a matrix function f : Rn×n → Rn×n. For X ,Y ∈ Rn×n, we define

Df (X ) [Y ] =
∂

∂t

∣∣∣
t=0

f (X + tY ) .

Remark. Note that if we think of X and Y each as a vector of numbers, then this is the (matrix-
valued) directional derivative of f at X in the direction of Y .

Consider f(X ) = X−1 for an invertible matrix X ∈ Rn×n. Prove that

Df(X )[Y ] = −X−1YX−1.

Hint: You might need to use Exercise 1.

Solution.

We can write Y =
∑

i,j Y (i, j)e ie
⊤
j , where e i denotes the vector with a 1 in the i-th coordinate

and 0’s elsewhere. Thus, we have that

Df (X ) [Y ] =
∑
i,j

Df (X )
[
Y (i, j) e ie

⊤
j

]
.
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Therefore, if we prove that Df(X )[Y (i, j)e ie
⊤
j ] = −X−1Y (i, j)e ie

⊤
j X

−1 then we can conclude

that Df(X )[Y ] = −X−1YX−1.

We know that

Df (X )
[
Y (i, j) e ie

⊤
j

]
= lim

t→0

(
X + tY (i, j)e ie

⊤
j

)−1
−X−1

t
. (2)

Furthermore, by applying Exercise 3 we get(
X + tY (i, j)e ie

⊤
j

)−1
= X−1 −

X−1tY (i, j)e ie
⊤
j X

−1

1 + tY (i, j)e⊤
j X

−1e i
. (3)

Combining Equations (2) and (3) implies that

Df (X )
[
Y (i, j) e ie

⊤
j

]
= lim

t→0

−X−1Y (i, j)e ie
⊤
j X

−1

1 + tY (i, j)e⊤
j X

−1e i
= −X−1Y (i, j)e ie

⊤
j X

−1.

This finishes the proof.

Exercise 3

1. Consider A ∈ Sn
++ and matrix ∆ ∈ Sn

+. Prove that (A+∆)−1 ⪯ A−1.

2. Let T be a convex set. We say that a function f : T → Rn×n, is operator convex if for any
two matrices A,B ∈ T and any θ ∈ [0, 1]

f (θX + (1− θ)Y ) ⪯ θf (X ) + (1− θ) f (Y ) .

Prove that f(X ) = X−1 is operator convex over the set T = Sn
++.

Hint: You could first show that operator convexity is implied by the second directional deriva-
tive D2f(X )[Y ,Y ] being positive semi-definite for all Y ∈ Sn and X ∈ Sn

++.

Solution.

1. From Exercise 1 in problem set 5, we know that if A ⪯ B for two matrices A,B ∈ Sn
++, then

B−1 ⪯ A−1. By setting B = A+∆, we can conclude that (A+∆)−1 ⪯ A−1.

Note that by setting ∆ = B − A, we can prove the statement of Exercise 1 from problem
set 5. Thus, it would be interesting to provide an alternative proof which does not use this
exercise. We provide such an alternative proof.

We know that

(A+∆)−1 = A−1 +

∫ 1

t=0

d

dt
(A+ t∆)−1 dt.

By applying Exercise 4, we get

(A+∆)−1 = A−1 +

∫ 1

t=0
− (A+ t∆)−1∆ (A+ t∆)−1 dt.
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Consider an arbitrary vector x , then we have that

x⊤ (A+∆)−1 x = x⊤A−1x −
∫ 1

t=0
x⊤ (A+ t∆)−1∆ (A+ t∆)−1 x dt.

We observe that x⊤ (A+ t∆)−1∆ (A+ t∆)−1 x ≥ 0. Therefore, we can conclude that

x⊤ (A+∆)−1 x ≤ x⊤A−1x

which implies that (A+∆)−1 ⪯ A−1.

2. First, we will show that D2f(X )[Y ,Y ] being positive semi-definite for all Y ∈ Sn and X ∈
Sn
++ implies operator-convexity. Define for t ∈ [0, 1] a function h(t) = z⊤f(X + t(Y −X ))z

for fixed z ∈ Rn and X ,Y ∈ Sn
++. This is a valid definition since X + t(Y −X ) is in Sn

++

for t ∈ [0, 1]. Observe that:

∂

∂t
h(t) = z⊤Df(X + t(Y −X ))[Y −X ]z

∂2

∂t2
h(t) = z⊤D2f(X + t(Y −X ))[Y −X ,Y −X ]z ≥ 0

The last inequality follows from D2f(X + t(Y −X ))[Y −X ,Y −X ] being positive semi-
definite by assumption. Therefore, we know that h is convex:

z⊤ [θf(X ) + (1− θ)f(Y )] z = θh(0) + (1− θ)h(1) ≥ h(1− θ) = z⊤f(θX + (1− θ)Y )z

This inequality holds for any z ∈ Rn which proves that f is operator convex.

What is left to show is that D2f(X )[Y ,Y ] is indeed positive semi-definite. Using
Exercise 2:

D2f(X )[Y ,Y ] =
∂2

∂t2

∣∣∣
t=0

f(X + tY )

=
∂

∂t

∣∣∣
t=0

− (X − tY )−1Y (X − tY )−1

= −∂(X − tY )−1

∂t

∣∣∣
t=0

YX−1 −X−1Y
∂(X − tY )−1

∂t

∣∣∣
t=0

= X−1YX−1YX−1 +X−1YX−1YX−1

= 2X−1YX−1YX−1

Remember that X being positive definite implies X−1 being positive definite. Thus, we have
for any x ∈ Rn:

x⊤D2f(X )[Y ,Y ]x = 2x⊤X−1YX−1YX−1x = 2z⊤X−1z ≥ 0

where z = YX−1x . Hence, D2f(X )[Y ,Y ] is positive semi-definite which completes the
proof.
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Exercise 4: Max Flow in directed Graphs with Edge Capacities

Consider directed graph G = (V,E, c) with arbitrary capacities c ≥ 0.

Let B ∈ RE×V be the edge vertex incidence matrix of the graph, i.e. if e ∈ E and (u, v) = e then
B(e, u) = 1 and B(e, v) = −1.

We let χv ∈ RV denote the indicator of vertex v, i.e. χv(v) = 1 and χv(u) = 0 for u ̸= v.

We let s ∈ V denote the flow “source” and t ∈ V the flow “sink”.

The maximum flow problem is given by

max
f ∈RE ,F≥0

F

s.t. Bf = F (−χs + χt)

0 ≤ f ≤ c

In the context of a given maximum flow problem, for a flow f satisfying Bf = F (−χs + χt), we
define val(f ) = F .

Let f ∗ denote a feasible flow maximizing F , so that the maximum attainable flow value F is val(f ∗).

Exercise 4.A: Convergence of Ford-Fulkerson

Show that the Ford-Fulkerson algorithm may not terminate; moreover, it may converge a value not
equal to the value of the maximum flow.

Hint: You might use the graph below with the given capacities, where r =
√
5−1
2 (which implies that

r2 = 1− r).

s

t

100

100

100 1001
1

100 r

100

Solution. Consider the graph below with the given capacities.1 The goal is to find a sequence
of augmenting paths such that the algorithm converges to a value which is much smaller than the
value of maximum flow.

1All the figures used in this exercise are borrowed from the slides of the course Theory of Algorithms by Kevin
Wayne, Princeton University.
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First, we augment Path 1: s, v, w, t.

Then, we augment Path 2: s, x, w, v, u, t.

Then, we augment Path 3: s, v, w, x, t.
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Then, we augment Path 4: s, x, w, v, u, t.

Then, we augment Path 5: s, u, v, w, t.

Then, we augment Path 6: s, x, w, v, u, t.
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Then, we augment Path 7: s, v, w, x, t.

Then, we augment Path 8: s, x, w, v, u, t.

Then, we augment Path 9: s, u, v, w, t.
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After augmenting Path 1 the flow is 1.

After augmenting Path 5 the flow is 1 + 2r + 2r2.

After augmenting Path 9 the flow is 1 + 2r + 2r2 + 2r3 + 2r4.

Using the given sequence of augmenting paths, after (1 + 4k)-th such path, the value of the flow is
equal to

F = 1 + 2
k∑

i=1

ri ≤ 1 + 2
∞∑
i=1

ri = 3 + 2r ≤ 5. (4)

We observe that the value of maximum flow is equal to 200+ 1 = 201. Therefore, we can conclude
that the Ford-Fulkerson algorithm may not terminate; moreover, it may converge a value not equal
to the value of the maximum flow.

Exercise 4.B: Iterative Refinement for Maximum Flow

Suppose we have an algorithm FlowRefine, which given a maximum flow instance G = (V,E, c)
with source s ∈ V and sink t ∈ V returns a feasible s-t flow f̃ , i.e. Bf̃ = F (−χs + χt) for
some F , and 0 ≤ f̃ ≤ c, and f̃ is guaranteed to route at least half the maximum flow, i.e.
F = val(f̃ ) ≥ 0.5 val(f ∗).

Suppose that the running time of FlowRefine is O(|E|c) for some constant c ≥ 1.

Explain how we can use FlowRefine to find a flow f̂ that routes at least (1− ϵ) val(f ∗) in time
O(|E|c log(1/ϵ)).

Solution. Assume that we are given a maximum flow instance G = (V,E, c) with source s ∈ V
and sink t ∈ V . Consider the flow f = 0. We run the algorithm FlowRefine on graph G.
We know that, it will return a feasible s-t flow f 1 such that val(f 1) ≥ 0.5 val(f ∗

G), where f ∗
G

is a maximum flow in G. Let Gf 1
be the residual graph of f 1 and set f = f + f 1. Let’s run

FlowRefine this time on graph Gf 1
. It should return a flow f 2. Now, we set f = f + f 2. Thus,
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we get

val (f ) = val (f 1) + val (f 2)

≥ val (f 1) +
1

2
val

(
f ∗
Gf 1

)
= val (f 1) +

1

2
val (f ∗

G)−
1

2
val (f 1)

=
1

2
val (f 1) +

1

2
val (f ∗

G)

≥ 1

4
val (f ∗

G) +
1

2
val (f ∗

G)

≥ 3

4
val (f ∗

G)

where we used val(f ∗
Gf 1

) + val(f 1) = val(f ∗
G) based on Lemmas 2.6 and 2.7 from Lecture 10.

By repeating the same argument, we can conclude that after k = log(1/ϵ) iterations

val (f ) ≥
(
1− 1

2k

)
val (f ∗

G) = (1− ϵ) val (f ∗
G)

We know that the running time of FlowRefine is O(|E|c) for some constant c ≥ 1 and one can
generate a residual graph in O(|E|). Therefore, the above algorithm runs in time O(|E|c log(1/ϵ)).

Exercise 5

Maximum flow is often introduced as a s-t problem in the following manner: Given a directed and
capacitated graph G = (V,E, c) with n vertices and m edges (assume integer capacities between 1
and n10) and edge-vertex incidence matrix B , a source s ∈ V and a sink t ∈ V , computes the flow
f that respects the capacities 0 ≤ f ≤ c, satisfies flow conservation (Bf )(v) = for v ∈ V \ {s, t}
and maximizes F where (Bf )(s) = −F and (Bf )(t) = F .

1. Show that such an algorithm can be used to solve the maximum flow problem as introduced
in the lecture, i.e. given a integral demand vector d ⊥ 1 with entries between −n10 and n10,
compute a flow that satisfies

min
0≤f ,Bf=d

∥∥diag(c)−1f
∥∥
∞ . (5)

2. Show that the converse is also true, i.e. that a solution to (5) can be used to solve the s-t
maximum flow problem.

Hint: There is always an integral maximum flow f in this setting.

Solution.

1. To compute such a flow using s-t maximum flow, we add extra vertices s and t, and connect
every vertex v with negative demand d(v) to s with an edge (s, v) of capacity −d(v). We do
the converse for every vertex u with positive demand, i.e. we add an edge (u, t) of capacity
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d(u). Then, we finally aim to find the minimum necessary congestion to route the demands.
To do so, we scale all the congestions in the input graph with some factor α and then round
them to the nearest integer. Binary searching for the lowest factor α that admits a flow
yields the congestion minimizing flow that routes the demands. Notice that the search can
be terminated once α is sufficiently (polynomially in n) accurate, because the optimal flow is
integral.

2. To compute such a flow using s-t maximum flow, we add extra vertices s and t, and connect
every vertex v with negative demand d(v) to s with an edge (s, v) of capacity −d(v). We do
the converse for every vertex u with positive demand, i.e. we add an edge (u, t) of capacity
d(u). Then, we finally aim to find the minimum necessary congestion to route the demands.
To do so, we scale all the congestions in the input graph with some factor α and then round
them to the nearest integer. Binary searching for the lowest factor α that admits a flow routing
all the demands yields the congestion minimizing flow that routes the demands. Notice that
the search can be terminated once α is sufficiently (polynomially in n) accurate, because the
optimal flow is integral.

3. To compute compute the maximum flow, we again use the oracle with demands −1 and 1 at
s and t respectively. Then, we can scale the flow with 1/

∥∥diag(c)−1f
∥∥
∞.
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