Spectral Graph Theory

R. Kyng \& M. Probst Gutenberg

Problem Set 6-Monday, April 8th

The exercises for this week will not count toward your grade, but you are highly encouraged to solve them all. This exercise sheet has exercises related to week 6 . We encourage you to start early so you have time to go through everything.
To get feedback, you must hand in your solutions by 23:59 on April 18. Both hand-written and LATEX solutions are acceptable, but we will only attempt to read legible text.

Notation

Througout the following exercises, we will use the following notation:

- S^{n} is the set of symmetric real $n \times n$ matrices.
- S_{+}^{n} is the set of positive semi-definite $n \times n$ matrices.
- S_{++}^{n} is the set of positive definite $n \times n$ matrices.

Whenever we say a matrix is positive semi-definite or positive definite, we require it to be real and symmetric.

Exercise 1

Consider $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{v}, \boldsymbol{u} \in \mathbb{R}^{n}$.

1. Assume that $\boldsymbol{I}+\boldsymbol{u} \boldsymbol{v}^{\top}$ is invertible. Determine c such that

$$
\left(\boldsymbol{I}+\boldsymbol{u} \boldsymbol{v}^{\top}\right)^{-1}=\boldsymbol{I}-\frac{\boldsymbol{u} \boldsymbol{v}^{\top}}{c}
$$

2. Assume that both \boldsymbol{A} and $\boldsymbol{A}+\boldsymbol{u} \boldsymbol{v}^{\top}$ are invertible. Prove that

$$
\left(\boldsymbol{A}+\boldsymbol{u} \boldsymbol{v}^{\top}\right)^{-1}=\boldsymbol{A}^{-1}-\frac{\boldsymbol{A}^{-1} \boldsymbol{u} \boldsymbol{v}^{\top} \boldsymbol{A}^{-1}}{1+\boldsymbol{v}^{\top} \boldsymbol{A}^{-1} \boldsymbol{u}}
$$

Hint: You might use that $(\boldsymbol{B} \boldsymbol{C})^{-1}=\boldsymbol{C}^{-1} \boldsymbol{B}^{-1}$ for two invertible matrices $\boldsymbol{B}, \boldsymbol{C} \in \mathbb{R}^{n \times n}$.

Solution.

1. We want to find c such that

$$
I=\left(I-\frac{u v^{\top}}{c}\right)\left(I+u v^{\top}\right)
$$

This is equivalent to

$$
\boldsymbol{I}=\boldsymbol{I}+\boldsymbol{u} \boldsymbol{v}^{\top}-\frac{\boldsymbol{u} \boldsymbol{v}^{\top}}{c}-\frac{\boldsymbol{u} \boldsymbol{v}^{\top}}{c} \boldsymbol{u} \boldsymbol{v}^{\top} .
$$

Notice that $\boldsymbol{u} \boldsymbol{v}^{\top} \boldsymbol{u} \boldsymbol{v}^{\top}=\boldsymbol{u}\left(\boldsymbol{v}^{\top} \boldsymbol{u}\right) \boldsymbol{v}^{\top}=\left(\boldsymbol{v}^{\top} \boldsymbol{u}\right) \boldsymbol{u} \boldsymbol{v}^{\top}$. Thus, the above equation holds if and only if

$$
1-\frac{1}{c}-\frac{\boldsymbol{v}^{\top} \boldsymbol{u}}{c}=0
$$

Therefore, we set $c=1+\boldsymbol{v}^{\top} \boldsymbol{u}$ and conclude hat

$$
\begin{equation*}
\left(\boldsymbol{I}+\boldsymbol{u} \boldsymbol{v}^{\top}\right)^{-1}=\boldsymbol{I}-\frac{\boldsymbol{u} \boldsymbol{v}^{\top}}{1+\boldsymbol{v}^{\top} \boldsymbol{u}} \tag{1}
\end{equation*}
$$

2. We have that

$$
\left(\boldsymbol{A}+\boldsymbol{u} \boldsymbol{v}^{\top}\right)^{-1}=\left(\boldsymbol{A}\left(\boldsymbol{I}+\boldsymbol{A}^{-1} \boldsymbol{u} \boldsymbol{v}^{\top}\right)\right)^{-1}
$$

By applying the fact that $(\boldsymbol{B} \boldsymbol{C})^{-1}=\boldsymbol{C}^{-1} \boldsymbol{B}^{-1}$ for two invertible matrices $\boldsymbol{B}, \boldsymbol{C} \in \mathbb{R}^{n \times n}$ and then using Equation (11), we get

$$
\begin{aligned}
\left(\boldsymbol{A}+\boldsymbol{u} \boldsymbol{v}^{\top}\right)^{-1} & =\left(\boldsymbol{I}+\boldsymbol{A}^{-1} \boldsymbol{u} \boldsymbol{v}^{\top}\right)^{-1} \boldsymbol{A}^{-1} \\
& =\left(\boldsymbol{I}-\frac{\boldsymbol{A}^{-1} \boldsymbol{u} \boldsymbol{v}^{\top}}{1+\boldsymbol{v}^{\top} \boldsymbol{A}^{-1} \boldsymbol{u}}\right) \boldsymbol{A}^{-1} \\
& =\boldsymbol{A}^{-1}-\frac{\boldsymbol{A}^{-1} \boldsymbol{u} \boldsymbol{v}^{\top} \boldsymbol{A}^{-1}}{1+\boldsymbol{v}^{\top} \boldsymbol{A}^{-1} \boldsymbol{u}}
\end{aligned}
$$

This equality is known as the Sherman-Morrison formula.

Exercise 2

Consider a matrix function $f: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$. For $\boldsymbol{X}, \boldsymbol{Y} \in \mathbb{R}^{n \times n}$, we define

$$
D f(\boldsymbol{X})[\boldsymbol{Y}]=\left.\frac{\partial}{\partial t}\right|_{t=0} f(\boldsymbol{X}+t \boldsymbol{Y})
$$

Remark. Note that if we think of \boldsymbol{X} and \boldsymbol{Y} each as a vector of numbers, then this is the (matrixvalued) directional derivative of f at \boldsymbol{X} in the direction of \boldsymbol{Y}.

Consider $f(\boldsymbol{X})=\boldsymbol{X}^{-1}$ for an invertible matrix $\boldsymbol{X} \in \mathbb{R}^{n \times n}$. Prove that

$$
D f(\boldsymbol{X})[\boldsymbol{Y}]=-\boldsymbol{X}^{-1} \boldsymbol{Y} \boldsymbol{X}^{-1}
$$

Hint: You might need to use Exercise 1.

Solution.

We can write $\boldsymbol{Y}=\sum_{i, j} \boldsymbol{Y}(i, j) \boldsymbol{e}_{i} \boldsymbol{e}_{j}^{\top}$, where \boldsymbol{e}_{i} denotes the vector with a 1 in the i-th coordinate and 0's elsewhere. Thus, we have that

$$
D f(\boldsymbol{X})[\boldsymbol{Y}]=\sum_{i, j} D f(\boldsymbol{X})\left[\boldsymbol{Y}(i, j) \boldsymbol{e}_{i} \boldsymbol{e}_{j}^{\top}\right]
$$

Therefore, if we prove that $D f(\boldsymbol{X})\left[\boldsymbol{Y}(i, j) \boldsymbol{e}_{i} \boldsymbol{e}_{j}^{\top}\right]=-\boldsymbol{X}^{-1} \boldsymbol{Y}(i, j) \boldsymbol{e}_{i} \boldsymbol{e}_{j}^{\top} \boldsymbol{X}^{-1}$ then we can conclude that $D f(\boldsymbol{X})[\boldsymbol{Y}]=-\boldsymbol{X}^{-1} \boldsymbol{Y} \boldsymbol{X}^{-1}$.

We know that

$$
\begin{equation*}
D f(\boldsymbol{X})\left[\boldsymbol{Y}(i, j) \boldsymbol{e}_{i} \boldsymbol{e}_{j}^{\top}\right]=\lim _{t \rightarrow 0} \frac{\left(\boldsymbol{X}+t \boldsymbol{Y}(i, j) \boldsymbol{e}_{i} \boldsymbol{e}_{j}^{\top}\right)^{-1}-\boldsymbol{X}^{-1}}{t} \tag{2}
\end{equation*}
$$

Furthermore, by applying Exercise 3 we get

$$
\begin{equation*}
\left(\boldsymbol{X}+t \boldsymbol{Y}(i, j) \boldsymbol{e}_{i} \boldsymbol{e}_{j}^{\top}\right)^{-1}=\boldsymbol{X}^{-1}-\frac{\boldsymbol{X}^{-1} t \boldsymbol{Y}(i, j) \boldsymbol{e}_{i} \boldsymbol{e}_{j}^{\top} \boldsymbol{X}^{-1}}{1+t \boldsymbol{Y}(i, j) \boldsymbol{e}_{j}^{\top} \boldsymbol{X}^{-1} \boldsymbol{e}_{i}} \tag{3}
\end{equation*}
$$

Combining Equations (2) and (3) implies that

$$
D f(\boldsymbol{X})\left[\boldsymbol{Y}(i, j) \boldsymbol{e}_{i} \boldsymbol{e}_{j}^{\top}\right]=\lim _{t \rightarrow 0} \frac{-\boldsymbol{X}^{-1} \boldsymbol{Y}(i, j) \boldsymbol{e}_{i} \boldsymbol{e}_{j}^{\top} \boldsymbol{X}^{-1}}{1+t \boldsymbol{Y}(i, j) \boldsymbol{e}_{j}^{\top} \boldsymbol{X}^{-1} \boldsymbol{e}_{i}}=-\boldsymbol{X}^{-1} \boldsymbol{Y}(i, j) \boldsymbol{e}_{i} \boldsymbol{e}_{j}^{\top} \boldsymbol{X}^{-1}
$$

This finishes the proof.

Exercise 3

1. Consider $\boldsymbol{A} \in S_{++}^{n}$ and matrix $\boldsymbol{\Delta} \in S_{+}^{n}$. Prove that $(\boldsymbol{A}+\boldsymbol{\Delta})^{-1} \preceq \boldsymbol{A}^{-1}$.
2. Let T be a convex set. We say that a function $f: T \rightarrow \mathbb{R}^{n \times n}$, is operator convex if for any two matrices $\boldsymbol{A}, \boldsymbol{B} \in T$ and any $\theta \in[0,1]$

$$
f(\theta \boldsymbol{X}+(1-\theta) \boldsymbol{Y}) \preceq \theta f(\boldsymbol{X})+(1-\theta) f(\boldsymbol{Y}) .
$$

Prove that $f(\boldsymbol{X})=\boldsymbol{X}^{-1}$ is operator convex over the set $T=S_{++}^{n}$.
Hint: You could first show that operator convexity is implied by the second directional derivative $D^{2} f(\boldsymbol{X})[\boldsymbol{Y}, \boldsymbol{Y}]$ being positive semi-definite for all $\boldsymbol{Y} \in S^{n}$ and $\boldsymbol{X} \in S_{++}^{n}$.

Solution.

1. From Exercise 1 in problem set 5 , we know that if $\boldsymbol{A} \preceq \boldsymbol{B}$ for two matrices $\boldsymbol{A}, \boldsymbol{B} \in S_{++}^{n}$, then $\boldsymbol{B}^{-1} \preceq \boldsymbol{A}^{-1}$. By setting $\boldsymbol{B}=\boldsymbol{A}+\boldsymbol{\Delta}$, we can conclude that $(\boldsymbol{A}+\boldsymbol{\Delta})^{-1} \preceq \boldsymbol{A}^{-1}$.
Note that by setting $\boldsymbol{\Delta}=\boldsymbol{B}-\boldsymbol{A}$, we can prove the statement of Exercise 1 from problem set 5 . Thus, it would be interesting to provide an alternative proof which does not use this exercise. We provide such an alternative proof.
We know that

$$
(\boldsymbol{A}+\boldsymbol{\Delta})^{-1}=\boldsymbol{A}^{-1}+\int_{t=0}^{1} \frac{d}{d t}(\boldsymbol{A}+t \boldsymbol{\Delta})^{-1} d t
$$

By applying Exercise 4, we get

$$
(\boldsymbol{A}+\boldsymbol{\Delta})^{-1}=\boldsymbol{A}^{-1}+\int_{t=0}^{1}-(\boldsymbol{A}+t \boldsymbol{\Delta})^{-1} \boldsymbol{\Delta}(\boldsymbol{A}+t \boldsymbol{\Delta})^{-1} d t
$$

Consider an arbitrary vector \boldsymbol{x}, then we have that

$$
\boldsymbol{x}^{\top}(\boldsymbol{A}+\boldsymbol{\Delta})^{-1} \boldsymbol{x}=\boldsymbol{x}^{\top} \boldsymbol{A}^{-1} \boldsymbol{x}-\int_{t=0}^{1} \boldsymbol{x}^{\top}(\boldsymbol{A}+t \boldsymbol{\Delta})^{-1} \boldsymbol{\Delta}(\boldsymbol{A}+t \boldsymbol{\Delta})^{-1} \boldsymbol{x} d t
$$

We observe that $\boldsymbol{x}^{\top}(\boldsymbol{A}+t \boldsymbol{\Delta})^{-1} \boldsymbol{\Delta}(\boldsymbol{A}+t \boldsymbol{\Delta})^{-1} \boldsymbol{x} \geq 0$. Therefore, we can conclude that

$$
\boldsymbol{x}^{\top}(\boldsymbol{A}+\boldsymbol{\Delta})^{-1} \boldsymbol{x} \leq \boldsymbol{x}^{\top} \boldsymbol{A}^{-1} \boldsymbol{x}
$$

which implies that $(\boldsymbol{A}+\boldsymbol{\Delta})^{-1} \preceq \boldsymbol{A}^{-1}$.
2. First, we will show that $D^{2} f(\boldsymbol{X})[\boldsymbol{Y}, \boldsymbol{Y}]$ being positive semi-definite for all $\boldsymbol{Y} \in S^{n}$ and $\boldsymbol{X} \in$ S_{++}^{n} implies operator-convexity. Define for $t \in[0,1]$ a function $h(t)=\boldsymbol{z}^{\top} f(\boldsymbol{X}+t(\boldsymbol{Y}-\boldsymbol{X})) \boldsymbol{z}$ for fixed $\boldsymbol{z} \in \mathbb{R}^{n}$ and $\boldsymbol{X}, \boldsymbol{Y} \in S_{++}^{n}$. This is a valid definition since $\boldsymbol{X}+t(\boldsymbol{Y}-\boldsymbol{X})$ is in S_{++}^{n} for $t \in[0,1]$. Observe that:

$$
\begin{array}{r}
\frac{\partial}{\partial t} h(t)=\boldsymbol{z}^{\top} D f(\boldsymbol{X}+t(\boldsymbol{Y}-\boldsymbol{X}))[\boldsymbol{Y}-\boldsymbol{X}] \boldsymbol{z} \\
\frac{\partial^{2}}{\partial t^{2}} h(t)=\boldsymbol{z}^{\top} D^{2} f(\boldsymbol{X}+t(\boldsymbol{Y}-\boldsymbol{X}))[\boldsymbol{Y}-\boldsymbol{X}, \boldsymbol{Y}-\boldsymbol{X}] \boldsymbol{z} \geq 0
\end{array}
$$

The last inequality follows from $D^{2} f(\boldsymbol{X}+t(\boldsymbol{Y}-\boldsymbol{X}))[\boldsymbol{Y}-\boldsymbol{X}, \boldsymbol{Y}-\boldsymbol{X}]$ being positive semidefinite by assumption. Therefore, we know that h is convex:

$$
\boldsymbol{z}^{\top}[\theta f(\boldsymbol{X})+(1-\theta) f(\boldsymbol{Y})] \boldsymbol{z}=\theta h(0)+(1-\theta) h(1) \geq h(1-\theta)=\boldsymbol{z}^{\top} f(\theta \boldsymbol{X}+(1-\theta) \boldsymbol{Y}) \boldsymbol{z}
$$

This inequality holds for any $\boldsymbol{z} \in \mathbb{R}^{n}$ which proves that f is operator convex.
What is left to show is that $D^{2} f(\boldsymbol{X})[\boldsymbol{Y}, \boldsymbol{Y}]$ is indeed positive semi-definite. Using Exercise 2:

$$
\begin{aligned}
D^{2} f(\boldsymbol{X})[\boldsymbol{Y}, \boldsymbol{Y}] & =\left.\frac{\partial^{2}}{\partial t^{2}}\right|_{t=0} f(\boldsymbol{X}+t \boldsymbol{Y}) \\
& =\left.\frac{\partial}{\partial t}\right|_{t=0}-(\boldsymbol{X}-t \boldsymbol{Y})^{-1} \boldsymbol{Y}(\boldsymbol{X}-t \boldsymbol{Y})^{-1} \\
& =-\left.\frac{\partial(\boldsymbol{X}-t \boldsymbol{Y})^{-1}}{\partial t}\right|_{t=0} \boldsymbol{Y} \boldsymbol{X}^{-1}-\left.\boldsymbol{X}^{-1} \boldsymbol{Y} \frac{\partial(\boldsymbol{X}-t \boldsymbol{Y})^{-1}}{\partial t}\right|_{t=0} \\
& =\boldsymbol{X}^{-1} \boldsymbol{Y} \boldsymbol{X}^{-1} \boldsymbol{Y} \boldsymbol{X}^{-1}+\boldsymbol{X}^{-1} \boldsymbol{Y} \boldsymbol{X}^{-1} \boldsymbol{Y} \boldsymbol{X}^{-1} \\
& =2 \boldsymbol{X}^{-1} \boldsymbol{Y} \boldsymbol{X}^{-1} \boldsymbol{Y} \boldsymbol{X}^{-1}
\end{aligned}
$$

Remember that \boldsymbol{X} being positive definite implies \boldsymbol{X}^{-1} being positive definite. Thus, we have for any $\boldsymbol{x} \in \mathbb{R}^{n}$:

$$
\boldsymbol{x}^{\top} D^{2} f(\boldsymbol{X})[\boldsymbol{Y}, \boldsymbol{Y}] x=2 \boldsymbol{x}^{\top} \boldsymbol{X}^{-1} \boldsymbol{Y} \boldsymbol{X}^{-1} \boldsymbol{Y} \boldsymbol{X}^{-1} \boldsymbol{x}=2 \boldsymbol{z}^{\top} \boldsymbol{X}^{-1} \boldsymbol{z} \geq 0
$$

where $\boldsymbol{z}=\boldsymbol{Y} \boldsymbol{X}^{-1} \boldsymbol{x}$. Hence, $D^{2} f(\boldsymbol{X})[\boldsymbol{Y}, \boldsymbol{Y}]$ is positive semi-definite which completes the proof.

Exercise 4: Max Flow in directed Graphs with Edge Capacities

Consider directed graph $G=(V, E, \boldsymbol{c})$ with arbitrary capacities $\boldsymbol{c} \geq \mathbf{0}$.
Let $\boldsymbol{B} \in \mathbb{R}^{E \times V}$ be the edge vertex incidence matrix of the graph, i.e. if $e \in E$ and $(u, v)=e$ then $\boldsymbol{B}(e, u)=1$ and $\boldsymbol{B}(e, v)=-1$.
We let $\boldsymbol{\chi}_{v} \in \mathbb{R}^{V}$ denote the indicator of vertex v, i.e. $\boldsymbol{\chi}_{v}(v)=1$ and $\boldsymbol{\chi}_{v}(u)=0$ for $u \neq v$.
We let $s \in V$ denote the flow "source" and $t \in V$ the flow "sink".
The maximum flow problem is given by

$$
\begin{array}{r}
\max _{\boldsymbol{f} \in \mathbb{R}^{E}, F \geq 0} F \\
\text { s.t. } \boldsymbol{B} \boldsymbol{f}=F\left(-\boldsymbol{\chi}_{s}+\boldsymbol{\chi}_{t}\right) \\
\mathbf{0} \leq \boldsymbol{f} \leq \boldsymbol{c}
\end{array}
$$

In the context of a given maximum flow problem, for a flow \boldsymbol{f} satisfying $\boldsymbol{B} \boldsymbol{f}=F\left(-\boldsymbol{\chi}_{s}+\boldsymbol{\chi}_{t}\right)$, we define $\operatorname{val}(\boldsymbol{f})=F$.

Let \boldsymbol{f}^{*} denote a feasible flow maximizing F, so that the maximum attainable flow value F is $\operatorname{val}\left(\boldsymbol{f}^{*}\right)$.

Exercise 4.A: Convergence of Ford-Fulkerson

Show that the Ford-Fulkerson algorithm may not terminate; moreover, it may converge a value not equal to the value of the maximum flow.

Hint: You might use the graph below with the given capacities, where $r=\frac{\sqrt{5}-1}{2}$ (which implies that $\left.r^{2}=1-r\right)$.

Solution. Consider the graph below with the given capacities 1 The goal is to find a sequence of augmenting paths such that the algorithm converges to a value which is much smaller than the value of maximum flow.

[^0]

First, we augment Path 1: s, v, w, t.

Then, we augment Path 2: s, x, w, v, u, t.

Then, we augment Path 3: s, v, w, x, t.

Then, we augment Path 4: s, x, w, v, u, t.

Then, we augment Path 5: s, u, v, w, t.

Then, we augment Path 6: s, x, w, v, u, t.

Then, we augment Path 7: s, v, w, x, t.

Then, we augment Path 8: s, x, w, v, u, t.

Then, we augment Path 9: s, u, v, w, t.

After augmenting Path 1 the flow is 1 .
After augmenting Path 5 the flow is $1+2 r+2 r^{2}$.
After augmenting Path 9 the flow is $1+2 r+2 r^{2}+2 r^{3}+2 r^{4}$.
Using the given sequence of augmenting paths, after $(1+4 k)$-th such path, the value of the flow is equal to

$$
\begin{equation*}
F=1+2 \sum_{i=1}^{k} r^{i} \leq 1+2 \sum_{i=1}^{\infty} r^{i}=3+2 r \leq 5 . \tag{4}
\end{equation*}
$$

We observe that the value of maximum flow is equal to $200+1=201$. Therefore, we can conclude that the Ford-Fulkerson algorithm may not terminate; moreover, it may converge a value not equal to the value of the maximum flow.

Exercise 4.B: Iterative Refinement for Maximum Flow

Suppose we have an algorithm FlowRefine, which given a maximum flow instance $G=(V, E, \boldsymbol{c})$ with source $s \in V$ and $\operatorname{sink} t \in V$ returns a feasible s - t flow $\tilde{\boldsymbol{f}}$, i.e. $\boldsymbol{B} \tilde{\boldsymbol{f}}=F\left(-\boldsymbol{\chi}_{s}+\boldsymbol{\chi}_{t}\right)$ for some F, and $\mathbf{0} \leq \tilde{\boldsymbol{f}} \leq \boldsymbol{c}$, and $\tilde{\boldsymbol{f}}$ is guaranteed to route at least half the maximum flow, i.e. $F=\operatorname{val}(\tilde{\boldsymbol{f}}) \geq 0.5 \operatorname{val}\left(\boldsymbol{f}^{*}\right)$.

Suppose that the running time of FlowRefine is $O\left(|E|^{c}\right)$ for some constant $c \geq 1$.
Explain how we can use FlowRefine to find a flow $\hat{\boldsymbol{f}}$ that routes at least $(1-\epsilon) \operatorname{val}\left(\boldsymbol{f}^{*}\right)$ in time $O\left(|E|^{c} \log (1 / \epsilon)\right)$.

Solution. Assume that we are given a maximum flow instance $G=(V, E, \boldsymbol{c})$ with source $s \in V$ and $\operatorname{sink} t \in V$. Consider the flow $f=\mathbf{0}$. We run the algorithm FlowRefine on graph G. We know that, it will return a feasible s - t flow \boldsymbol{f}_{1} such that $\operatorname{val}\left(\boldsymbol{f}_{1}\right) \geq 0.5 \mathrm{val}\left(\boldsymbol{f}_{G}^{*}\right)$, where \boldsymbol{f}_{G}^{*} is a maximum flow in G. Let $G_{f_{1}}$ be the residual graph of f_{1} and set $f=f+f_{1}$. Let's run FlowRefine this time on graph $G_{f_{1}}$. It should return a flow \boldsymbol{f}_{2}. Now, we set $\boldsymbol{f}=\boldsymbol{f}+\boldsymbol{f}_{2}$. Thus,
we get

$$
\begin{aligned}
\operatorname{val}(\boldsymbol{f}) & =\operatorname{val}\left(\boldsymbol{f}_{1}\right)+\operatorname{val}\left(\boldsymbol{f}_{2}\right) \\
& \geq \operatorname{val}\left(\boldsymbol{f}_{1}\right)+\frac{1}{2} \operatorname{val}\left(\boldsymbol{f}_{G_{f_{1}}}^{*}\right) \\
& =\operatorname{val}\left(\boldsymbol{f}_{1}\right)+\frac{1}{2} \operatorname{val}\left(\boldsymbol{f}_{G}^{*}\right)-\frac{1}{2} \operatorname{val}\left(\boldsymbol{f}_{1}\right) \\
& =\frac{1}{2} \operatorname{val}\left(\boldsymbol{f}_{1}\right)+\frac{1}{2} \operatorname{val}\left(\boldsymbol{f}_{G}^{*}\right) \\
& \geq \frac{1}{4} \operatorname{val}\left(\boldsymbol{f}_{G}^{*}\right)+\frac{1}{2} \operatorname{val}\left(\boldsymbol{f}_{G}^{*}\right) \\
& \geq \frac{3}{4} \operatorname{val}\left(\boldsymbol{f}_{G}^{*}\right)
\end{aligned}
$$

where we used $\operatorname{val}\left(\boldsymbol{f}_{G_{f_{1}}}^{*}\right)+\operatorname{val}\left(\boldsymbol{f}_{1}\right)=\operatorname{val}\left(\boldsymbol{f}_{G}^{*}\right)$ based on Lemmas 2.6 and 2.7 from Lecture 10 .
By repeating the same argument, we can conclude that after $k=\log (1 / \epsilon)$ iterations

$$
\operatorname{val}(\boldsymbol{f}) \geq\left(1-\frac{1}{2^{k}}\right) \operatorname{val}\left(\boldsymbol{f}_{G}^{*}\right)=(1-\epsilon) \operatorname{val}\left(\boldsymbol{f}_{G}^{*}\right)
$$

We know that the running time of FlowRefine is $O\left(|E|^{c}\right)$ for some constant $c \geq 1$ and one can generate a residual graph in $O(|E|)$. Therefore, the above algorithm runs in time $O\left(|E|^{c} \log (1 / \epsilon)\right)$.

Exercise 5

Maximum flow is often introduced as a $s-t$ problem in the following manner: Given a directed and capacitated graph $G=(V, E, \boldsymbol{c})$ with n vertices and m edges (assume integer capacities between 1 and n^{10}) and edge-vertex incidence matrix \boldsymbol{B}, a source $s \in V$ and a $\operatorname{sink} t \in V$, computes the flow \boldsymbol{f} that respects the capacities $\mathbf{0} \leq \boldsymbol{f} \leq \boldsymbol{c}$, satisfies flow conservation $(\boldsymbol{B} \boldsymbol{f})(v)=$ for $v \in V \backslash\{s, t\}$ and maximizes F where $(\boldsymbol{B} \boldsymbol{f})(s)=-F$ and $(\boldsymbol{B} \boldsymbol{f})(t)=F$.

1. Show that such an algorithm can be used to solve the maximum flow problem as introduced in the lecture, i.e. given a integral demand vector $\boldsymbol{d} \perp \mathbf{1}$ with entries between $-n^{10}$ and n^{10}, compute a flow that satisfies

$$
\begin{equation*}
\min _{\mathbf{0} \leq f, \boldsymbol{B} f=\boldsymbol{d}}\left\|\operatorname{diag}(\boldsymbol{c})^{-1} \boldsymbol{f}\right\|_{\infty} . \tag{5}
\end{equation*}
$$

2. Show that the converse is also true, i.e. that a solution to (5) can be used to solve the s - t maximum flow problem.

Hint: There is always an integral maximum flow \boldsymbol{f} in this setting.

Solution.

1. To compute such a flow using s - t maximum flow, we add extra vertices s and t, and connect every vertex v with negative demand $\boldsymbol{d}(v)$ to s with an edge (s, v) of capacity $-\boldsymbol{d}(v)$. We do the converse for every vertex u with positive demand, i.e. we add an edge (u, t) of capacity
$\boldsymbol{d}(u)$. Then, we finally aim to find the minimum necessary congestion to route the demands. To do so, we scale all the congestions in the input graph with some factor α and then round them to the nearest integer. Binary searching for the lowest factor α that admits a flow yields the congestion minimizing flow that routes the demands. Notice that the search can be terminated once α is sufficiently (polynomially in n) accurate, because the optimal flow is integral.
2. To compute such a flow using $s-t$ maximum flow, we add extra vertices s and t, and connect every vertex v with negative demand $\boldsymbol{d}(v)$ to s with an edge (s, v) of capacity $-\boldsymbol{d}(v)$. We do the converse for every vertex u with positive demand, i.e. we add an edge (u, t) of capacity $\boldsymbol{d}(u)$. Then, we finally aim to find the minimum necessary congestion to route the demands. To do so, we scale all the congestions in the input graph with some factor α and then round them to the nearest integer. Binary searching for the lowest factor α that admits a flow routing all the demands yields the congestion minimizing flow that routes the demands. Notice that the search can be terminated once α is sufficiently (polynomially in n) accurate, because the optimal flow is integral.
3. To compute compute the maximum flow, we again use the oracle with demands -1 and 1 at s and t respectively. Then, we can scale the flow with $1 /\left\|\operatorname{diag}(\boldsymbol{c})^{-1} \boldsymbol{f}\right\|_{\infty}$.

[^0]: ${ }^{1}$ All the figures used in this exercise are borrowed from the slides of the course Theory of Algorithms by Kevin Wayne, Princeton University.

