
Advanced Graph Algorithms and Optimization Spring 2024

Classical Algorithms for Maximum Flow

R. Kyng & M. Probst Gutenberg Problem Set 7 — Monday, April 15th

The exercises for this week will not count toward your grade, but you are highly encouraged to
solve them all. This exercise sheet has exercises related to week 7. We encourage you to start early
so you have time to go through everything.

To get feedback, you must hand in your solutions by 23:59 on April 25. Both hand-written and
LATEX solutions are acceptable, but we will only attempt to read legible text.

Exercise 1: Implementing Field Preservations for Cut-Link Tree Rotations

In Chapter 12, Section 12.3, we described the operations PLink(u, v) and PCut(u, v) by doing
O(log n) tree rotations (in expectation). However, we omitted the details. Here we ask you to give
the pseudo-code for the operation PTreeRotation(v, w) where it is assumed that on input v is
the parent of w and the operation manipulates the tree over the path such that v and w change
position as described in the script. For simplicity, you are allowed to assume that w is the left child
of v, and that the nodes leftP(v), rightP(v), leftP(w), rightP(w) exist. Accompany your pseudo-code
with a brief analysis that confirms that the run-time is indeed O(1).

Exercise 2: Blocking Flows on Expander Graphs

Some classical algorithms for maximum flow have the unexpected behaviour that they often termi-
nate much faster than their worst-case guarantee would suggest. One such algorithm is the blocking
flow algorithm. The goal of this exercise is to show that expander graphs are one class of graphs
for which blocking flow works particularly well.

In this exercise we develop an approximate s-t maximum flow algorithm for a φ-expander graph
G = (V,E) with n vertices and m edges. Each edge has unit capacity. Show the following.

1. Assume that the amount of s-t demand D is at most 1 − ε of the maximum flow, i.e. the s-t
min-cut is at least 1/(1 − ε)D. Show that h = O(logmφε) to send D flow from s to t in that
case.

1

