
Advanced Graph Algorithms and Optimization Spring 2020

Classical Algorithms for Maximum Flow II

Rasmus Kyng, Scribe: Timon Knigge Lecture 11 — Wednesday, May 6th

1 Overview

In this lecture we continue looking at classical max flow algorithms. We derive Dinic’s algorithm
which (unlike Ford-Fulkerson) converges in a polynomial number of iterations. We will also show
faster convergence on unit capacity graphs. The setting is the same as last lecture: we have
a directed graph G = (V,E, c) with positive capacities on the edges. Our goal is to solve the
maximum flow problem on this graph for a given source s and sink t 6= s:

max
F>0

F s.t. Bf = Fbs,t

0 ≤ f ≤ c
(1)

2 Blocking flows

Let f be any feasible flow in G and let Gf be its residual graph. Observe that we can partition
the vertices of Gf into ‘layers’: first s itself, then all vertices reachable from s in one hop, then
all vertices reachable in two hops, etc. For each vertex v ∈ V define its level in Gf as the length
of the shortest path in Gf from s to v, denoted by `Gf

(v) (or just `(v) if the graph is clear from
context). An edge (u, v) ∈ E can only take you up ‘one level’: if `(v) ≥ 2 + `(u) this would imply
we can find a shorter s-v path by appending (u, v) to the shortest s-u path. However, edges can
‘drop down’ multiple levels (or be contained in the same level).

A key strategy in Dinic’s algorithm will be to focus on ‘short’ augmenting paths. We can use
the levels we defined above to isolate a subgraph of Gf containing all information we need to find
shortest paths:

Definition 2.1. Call an edge (u, v) admissible if `(u) + 1 = `(v). Let L be the set of admissible
edges in Gf and define the level graph of Gf to be the subgraph induced by these edges.

Definition 2.2. Define a blocking flow in a residual graph Gf to be a flow f̂ feasible in Gf , such

that f̂ only uses admissible edges. Furthermore we require that for any s-t path in the level graph
of Gf , f̂ saturates at least one edge on this path.

The last condition makes a blocking flow ‘blocking’: it blocks any shortest augmenting path in Gf

by saturating one of its edges. Note however that a blocking flow is not necessarily a maximum
flow in the level graph:

1

s

t

0/1 0/1

0/1 0/1

1/1 1/1

1/1

Figure 1: A blocking flow is not a maximum flow.

3 Dinic’s algorithm

We can now formulate Dinic1’s algorithm: start with f = 0, and then repeatedly add to f a
blocking flow f̂ in Gf , until no more s-t paths exist in Gf .

Note that by doing a path decomposition on f̂ and adding these paths to f one by one, we see that
our algorithm is a ‘special case’ of Ford-Fulkerson (with a particular augmenting path strategy)
and hence inherits all the behaviors/bounds we proved in the last lecture.

Lemma 3.1. Let f be a feasible flow, f̂ a blocking flow in Gf and define f ′ = f + f̂ (think of f
and f ′ to be the flows at some steps k and k + 1 in the algorithm). Then `Gf ′ (t) ≥ `Gf

(t) + 1.

Proof. Let L,L′ be the edge sets of the level graphs of Gf , Gf ′ respectively. We would now like to
show that dL′(s, t) ≥ 1 + dL(s, t). Let’s first assume that in fact dL′(s, t) < dL(s, t). Now take a
shortest s-t path in the level graph of Gf ′ , say s = v0, v1, . . . , vdL′ (s,t) = t. Let vj be the first vertex
along the path such that dL′(s, vj) < dL(s, vj). As dL′(s, t) < dL(s, t), such a vj must exist.

We’d like to understand the edges in the level graph L′. Let E(Gf) denote the edges of the Gf ,
and let rev(L) denote the set of reversed edges of L. The level graph edges of Gf ′ must satisfy
L′ ⊆ L ∪ rev(L) ∪ (E(Gf) \ L).

In our s-t path in L′, the vertex vj is reached by an edge from vj−1, and the level of vj−1 in Gf

and Gf ′ are the same, so the edge (vj−1, vj) ∈ L skips at least one level forward in Gf . But, edges
in L do not skip a level in Gf , and edges in rev(L) or E(Gf) \L do not move from a lower level to
higher level in Gf . So this edge cannot exist and we have reached a contradiction.

Now suppose that dL′(s, t) = dL(s, t). This means there is an s-t path in L′ using edges in L – but
such a path must contain an edge saturated by the blocking flow f̂ .

(Note: the reason this path must use only edges in L is similar to the previous case: the other
possible types of edges do not move to higher levels in Gf at all, making the path too long if we
use any of them.)

So we must have dL′(s, t) ≥ 1 + dL(s, t).

An immediate corollary of this lemma is the convergence of Dinic’s algorithm:

Theorem 3.2. Dinic’s algorithm terminates in O(n) iterations.

1Sometimes also transliterated as Dinitz.

2

Proof. By the previous lemma, the level of t increases by at least one each iteration. A shortest
path can only contain each vertex once (otherwise it would contain a cycle) so the level of any
vertex is never more than n.

For graphs with unit capacities (c = 1) we can prove even better bounds on the number of iterations.

Theorem 3.3. On unit capacity graphs, Dinic’s algorithm terminates in

O
(

min{m1/2, n2/3}
)

iterations.

Proof. We prove the two bounds separately.

1. Suppose we run Dinic’s algorithm for k iterations, obtaining a flow f that is feasible but not
necessarily yet optimal. Let f̃ be an optimal flow in Gf (i.e. f + f̃ is a maximum flow for the
whole graph), and consider a path decomposition of f̃ . Since after k iterations any s-t path
has length k or more, we use up a total capacity of at least val(f̃)k across all edges. But the
edges in Gf are either edges from the original graph G or their reversals (but never both)
meaning the total capacity of Gf is at most m, hence f̃ ≤ m/k.

Recalling our earlier observation that our algorithm is a special case of Ford-Fulkerson, this
implies that our algorithm will terminate after at most another m/k iterations. Hence the
number of iterations is bounded by k + m/k for any k > 0. Substituting k =

√
m gives the

first desired bound.

2. Suppose again that we run Dinic’s algorithm for k iterations obtaining a flow f . The level
graph of Gf partitions the vertices into sets Di = {u | `(u) = i} for i ≥ 0. As shown before,
the sink t must be at a level at least k, meaning we have at least this many non-empty levels
starting from D0 = {s}. To simplify, discard all vertices and levels beyond D`(t).

Now, consider choosing a level I uniformly at random from {1, . . . , k}. Since there are at most
n− 1 vertices in total across these levels, E [|DI |] ≤ (n− 1)/k, and by Markov’s inequality

Pr[|DI | ≥ 2n/k] ≤ (n− 1)/n < 1/2.

Thus strictly more than k/2 of the levels i ∈ {1, . . . , k} have |Di| < 2n/k and so there must
two adjacent levels j, j+1 for which this upper bound on the size holds. There can be at most
|Dj | · |Dj+1| ≤ 4n2/k2 between these levels, and by the min-cost max-flow theorem we saw in
the previous lecture, this is an upperbound on the flow in Gf , and hence on the number of
iterations still needed for our algorithm to terminate.

This means the number of iterations is bounded by k+4n2/k2 for any k > 0, which is O(n2/3)
at k = 2n2/3.

3

4 Finding blocking flows

What has been missing from our discussion so far is the process of actually finding a blocking flow.
We can achieve this using repeated depth-first search. We repeatedly do a search in the level graph
(so only using edges L) for s-t paths and augment these. We erase edges whose subtrees have been
exhausted and do not contain any augmenting paths to t. Pseudocode for the algorithm is given
below.

Algorithm 1: FindBlockingFlow

f ← 0;
H ← L;
repeat

P ← Dfs(s,H, t);
if P 6= ∅ then

Let f̂ be a flow that saturates path P .
f ← f + f̂ ;

Remove from H all edges saturated by f̂ .
else

return f ;
end

Algorithm 2: Dfs(u, H, t)

if u = t then
return the path P on the dfs-stack.

end
for (u, v) ∈ H do

P ← Dfs(v,H, t);
if P 6= ∅ then

return P ;
else

Erase (u, v) from H.
end

end
return ∅;

Lemma 4.1. For general graphs, FindBlockingFlow returns a blocking flow in O(nm) time.
Hence Dinic’s algorithm runs in O(n2m) time on general capacity graphs.

Proof. First, consider the amount of work spent pushing edges onto the stack which eventually
results in augmentation along an s-t consisting of those edges (i.e. adding flow along that path).
Since each augmenting path saturates at least one edge, we do at most m augmentations. Each
path has length at most n. Thus the total amount of work pushing these edges to the stack, and
removing them from the stack upon augmentation, and deleting saturated edges, can be bounded
by O(mn). Now consider the work spent pushing edges onto the stack which are later deleted
because we “retreat” after not finding an s-t. An edge can only be pushed onto the stack once in
this way, since it is then deleted. So the total amount spent pushing edges to the stack and deleting

4

them this way is O(m).

Lemma 4.2. For unit capacity graphs, FindBlockingFlow returns a blocking flow in O(m)
time. Hence Dinic’s algorithm runs in O

(
min{m3/2,mn2/3}

)
time on unit capacity graphs.

Proof. When our depth-first search traverses some edge (u, v), one of two things will happen: either
we find no augmenting path in the subtree of v, leading to the erasure of this edge, or we find an
augmenting path which will necessarily saturate (u, v), again leading to its erasure. This means
each edge will be traversed at most once by the depth-first search.

Another interesting bound on the runtime, which we will not prove here, is that Dinic’s algorithm

will run in O
(
E
√
V
)

time on bipartite matching graphs.

5 Minimum cut as a linear program

Finally we show that minimum cut may be formulated as a linear program. For a subset S ⊆ V
write cG(S) for the sum of c(e) over all edges e = (u, v) that cross the cut, i.e. u ∈ S, v 6∈ S. Note
that ‘reverse’ edges are not counted in this cut. The minimum cut problem asks us to find some
S ⊆ V such that s ∈ S and t 6∈ S such that cG(S) is minimal.

min
S⊆V

cG(S)

s.t. s ∈ S

t 6∈ S

(2)

We claim this is equivalent to the following minimization problem:

min
x∈RV

∑
e∈E

c(e) max
{
b>e x , 0

}
s.t. x (s) = 0

x (t) = 1

0 ≤ x ≤ 1

(3)

Recall b>e x = x (v) − x (u) for e = (u, v). We can rewrite this as proper linear program by
introducing extra variables for the maximum:

min
x∈RV ,u∈RE

c>u

s.t. b>s,tx = 1

0 ≤ x ≤ 1

u ≥ 0

u ≥ B>x

(4)

5

And, in fact, we’ll also see that we don’t need the constraint 0 ≤ x ≤ 1, leading to the following
simpler program:

min
x∈RV ,u∈RE

c>u

s.t. b>s,tx = 1

u ≥ 0

u ≥ B>x

(5)

Lemma 5.1. Programs (2), (4), and (5) have equal optimal values.

Proof. We start by considering equality between optimal values of Program (2) and Program (4)
Let S be an optimal solution to Program (2) and take x = 1V \S . Then x is a feasible solution to
Program (4) with cost equal to cG(S).

Conversely, suppose x is an optimal solution to Program (4). Let t be uniform in [0, 1] and define
S = {v ∈ V | x (v) ≤ t}. This is called a threshold cut. We can verify that

P [e is cut by S] = max{b>e x , 0}

and hence Et[cG(S)] is exactly the optimization function of 3 (and hence 4). Since at least one
outcome must do as well as the average, there is subset S ⊆ V achieving this value (or less).

We can use the same threshold cut to show that we can round a solution to Program (5) to an
equal or smaller value cut feasible for Program (2). The only difference is that in this case, we get

P [e is cut by S] ≤ max{b>e x , 0}

which is still sufficient.

6

	Overview
	Blocking flows
	Dinic's algorithm
	Finding blocking flows
	Minimum cut as a linear program

