
Advanced Graph Algorithms and Optimization Spring 2020

Course Introduction

Rasmus Kyng Lecture 1 — Wednesday, February 19th

1 Overview

This course will take us quite deep into modern approaches to graph algorithms using convex
optimization techniques. By studying convex optimization through the lens of graph algorithms,
we’ll try to develop a deeper understanding of fundamental phenomena in optimization. Much of
our time will be devoted to flow problems on graphs. We will not only be studying these problems
for their own sake, but also because they often provide a useful setting for thinking more broadly
about optimization.

The course will cover some traditional discrete approaches to various graph problems, especially
flow problems, and then contrast these approaches with modern, asymptotically faster methods
based on combining convex optimization with spectral and combinatorial graph theory.

2 Electrical flows and voltages - a graph problem from middle
school?

We will dive right into graph problems by considering how electrical current moves through a
network of resistors.

First, let us recall some middle school physics. If some of these things don’t make sense two you,
don’t worry, in less than paragraph from here, we’ll be make to safely doing math.

Recall that a typical battery that buy from Migros has two endpoints, and produces what is called
a voltage difference between these endpoints.

One end of the battery will have a positive charge (I think that means an excess of positrons1),
and the other a negative charge. If we connect the two endpoints with a wire, then a current will
flow from one end of the battery to the other in an attempt to even out this imbalance of charge.

1I’m joking, of course! Try Wikipedia if you want to know more. However, you will not need it for this class.
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Figure 1: A 9 volts battery with a wire attached.

We can also imagine a kind of battery that tries to send a certain amount of current the wires
between its endpoints, e.g. 1 unit of charge per unit of time. This will be a little more convenient
to work with, so let us focus on that case.

Figure 2: A 1 ampere battery with a wire attached.

A resistor is a piece of wire that connects two points u and v, and is completely described by a
single number r called its resistance.

If the voltage difference between the endpoints of the resistor is x, and the resistance is r then this
will create a flow of charge per unit of time of f = x/r. This is called Ohm’s Law.
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Figure 3: Ohm’s Law for a resistor with resistance r = 1.

Suppose we set up a bunch of wires that route electricity from our current source s to our current
sink t in some pattern:

Figure 4: A path of two resistors.

We have one unit of charge flowing out of s per unit of time, and one unit coming into t. Because
charge is conserved, the current flowing into any other point u must equal the amount flowing out
of it. This is called Kirchoff’s Current Law.

To send one unit of current from s to t, we must be sending it first form s to u and then from u
to t. So the current on edge (s, u) is 1 and the current on (u, t) is 1. By Ohm’s Law, the voltage
difference must also be 1 across each of the two wires. Thus if the voltage is x at s, it must be x+1
at u and x+ 2 at t. What is x? It turns out it doesn’t matter: We only care about the differences.
So let us set x = 0.
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Figure 5: A path of two resistors.

Let us try one more example:

Figure 6: A network with three resistors.

How much flow will go directly from s to t and how much via u?

Well, we know what the net current flowing into and out of each vertex must be, and we can use
to set up some equations. Let us say the voltage at s is xs, at u is xu and at t is xt.

• Net current at s: −1 = (xs − xt) + (xs − xu)

• Net current at u: 0 = (xu − xs) + (xu − xt)
• Net current at t: 1 = (xt − xs) + (xt − xu)

The following is a solution: xs = 0, xu = 1
3 , xt = 2

3 . And as before, we can shift all the voltages by
some constant x and get another solution a = x + 0, xu = x + 1

3 , xt = x + 2
3 . You might want to

convince yourself that these are the only solutions.

Electrical flows in general graphs. Do we know enough to calculate the electrical flow in some
other network of resistors? To answer this, let us think about the network as a graph. Consider
a undirected graph G = (V,E) with |V | = n vertices and |E| = m edges, and let us assume G is
connected. Let’s associate a resistance r(e) > 0 with every edge e ∈ E.

To keep track of the direction of the flow on each edge, it will be useful to assign an arbitrary
direction to every edge. So let’s do that, but remember that this is just a bookkeeping tool that
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helps us track where flow is going.

A flow in the graph is a vector f : RE . The net flow of f at a vertex u ∈ V is defined as∑
v→u f (v, u)−

∑
u→v f (u, v).

We say a flow routes the demands d ∈ RV if the net flow at every vertex v is d(v).

We can assign a voltage to every vertex x ∈ RV . Ohm’s Law says that the electrical flow induced
by these voltages will be f (u, v) = 1

r(u,v)
(x (u)− x (v)).

Say we want to route unit of current from vertex s ∈ V to vertex t ∈ V . As before, we can write an
equation for every vertex saying that the voltage differences must produce the desired net current:

• Net current at s: − 1 =
∑

(s,v)
1

r(s,v)(x (s)− x (v))

• Net current at u ∈ V \ {s, t}: 0 =
∑

(u,v)
1

r(u,v)(x (u)− x (v))

• Net current at t: 1 =
∑

(t,v)
1

r(t,v)(x (t)− x (v))

This gives us n constraints, exactly as many as we have voltage variables. However we have to be
a little careful when trying to conclude that a solution exists, yielding voltages x that gives induce
an electrical flow routing the desired demand.

You will prove in the exercises (as part of this week’s Exercise 3) that a solution x exists. The
proof requires two important observations: Firstly that the graph is connected, and secondly that
summed over all vertices, the net demand is zero, i.e. as much flow is coming into the network as
is leaving it.

The incidence matrix and the Laplacian matrix. To have a more compact notation for net
flow constraints, we also introduce the edge-vertex incidence matrix of the graph, B ∈ RV×E .

B(v, e) =


1 if e = (u, v)

−1 if e = (v, u)

0 o.w.

Now we can express the net flow constraint that f routes d by

Bf = d .

This is also called a conservation constraint. In our examples so far, we have d(s) = −1, d(t) = 1
and d(u) = 0 for all u ∈ V \ {s, t}.

If we let R = diage∈E r(e) then Ohm’s law tells us that f = R−1B>x . Putting these observations
together, we have BR−1B>x = d . The voltages x that induce f must solve this system of linear
equations, and we can use that to compute both x and f . It is exactly the same linear equation as
the one we considered earlier. We can show a that for a connected graph, a solution x exists if and
only if the flow into the graph equals the net flow out, which we can express as

∑
v d(v) = 0 or

1>d = 0. You will show this as part of Exercise 3. This also implies that an electrical flow routing
d exists if and only if the net flow into the graph equals the net flow out, which we can express as
1>d = 0.

The matrix BR−1B> is called the Laplacian of the graph and is usually denoted by L.
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An optimization problem in disguise. So far, we have looked at electrical voltages and flows
as arising from a set of linear equations – and it might not be apparent that this has anything to
do with optimization. But transporting current through a resistor requires energy, which will be
dissipated as heat by the resistor (i.e. it will get hot!). If we send a current of f across a resistor
with a potential drop of x, then the amount of energy spent per unit of time by the resistor will be
f · x. This is called Joule’s Law. Applying Ohm’s law to a resistor with resistance r, we can also
express this energy per unit of time as f · x = x2/r = r · f2. Since we aren’t bothering with units,
we will even forget about time, and refer to these quantities as “energy”, even though a physicist
would call them “power”.

Figure 7: Energy has a function of flow in a resistor with resistance r = 1.

Now, another interesting question would seem to be: If we want to find a flow routing a certain
demand d , how should have flow behave in order to minimize the the electrical energy spent routing
the flow? We can phrase this as an optimization problem:

min
f ∈RE

∑
e

r(e)f (e)2

s.t. Bf = d .

We call this problem electrical energy-minimizing flow. It turns out, that the flow f ∗ that minimizes
the electrical energy among all flows that satisfy Bf = d is precisely the electrical flow.

A pair of problems. What about our voltages, can we also get them from some optimization
problem? Well, we can work backwards from the fact that our voltages solve the equation Lx = d .
Consider the function c(x ) = 1

2x
>Lx − x>d . We should ask ourselves some questions about this

function c : RV → R. Is it continuous and continuously differentiable? The answer to this is yes,
and that is not hard to see. Does the function have a minimum? This is maybe not immediately
clear, but the minimum does indeed exist.

When this is minimized, the derivative of c(x ) with respect to each coordinate of x must be zero.
This condition yields exactly the system of linear equations Lx = d . You will confirm this in
Exercise 4.
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Based on our derivative considitio for the optimum can also express the electrical voltages as the
solution to an optimization problem, namely

min
x∈RV

1

2
x>Lx − x>d

As you are probably be aware, having the derivative of each coordinate equal zero is not a sufficient
condition for being at the optimum of a function2. It is also interesting to know whether all
solutions to Lx = d are in fact minimizers of c. The answer is yes, and will see some very general
tools for proving statements like this in a lecture or two.

Altogether, we can see that routing electrical current through a network of resistors leads to a pair
of optimization problems, let’s call them f ∗ and x ∗, and that the solutions to the two problems
are related, in our case through the equation f ∗ = R−1B>x ∗. In Exercise 5, you will explore this
relationship more.

This turns out to be an instance of a much broader phenomenon, known as Lagrangian duality,
which allows to to learn a lot about many optimization problems by studying two related pairs of
problems.

Solving Lx = d . Given a graph G with resistances for the edges, and some net flow vector d , how
quickly can we compute x? Broadly speaking, there are two very different families of algorithms
we could use to try to solve this problem.

Either, we could solve the linear equation using something like Gaussian Elimination to compute
an exact solution.

Alternatively, we could start with a guess at a solution, e.g. x 0 = 0, and then we could try to
make a change to x 0 to reach a new point x 1 with a lower value of c(x ) = 1

2x
>Lx − x>d , i.e.

c(x 1) < c(x 0). If we repeat a process like that for enough steps, say t, hopefully we eventually
reach x t with c(x t) close to c(x ∗), where x ∗ is a minimizer of c(x ) and hence Lx ∗ = d . Now, we
also need to make sure that c(x t) ≈ c(x ∗) implies that Lx t ≈ d in some useful sense.

One of the most basic algorithms in this framework of “guess and adjust” is called Gradient Descent,
which will study in two weeks. The rough idea is the following: if we make a very small from x to
x + δ, then a multivariate Taylor expansion suggests that c(x + δ)− c(x ) ≈

∑
v∈V δ(v) ∂c(x )

∂x (v) .

If we are dealing with smooth convex function, this quantity is negative if we let δ(v) = −ε · ∂c(x )∂x (v)
for some small enough ε so the approximation holds well. So we should be able to make progress
by taking a small step in this direction. That’s Gradient Descent! The name comes from the vector
of partial derivatives, which is called the gradient.

As we will see later in this course, understanding electrical problems from an optimization perspec-
tive is crucial to developing fast algorithms for computing electrical flows and voltages, but to do
very well, we also need to borrow some ideas from Gaussian Elimination.

What running times do different approaches get?

2Consider the function in one variable c(x) = x3.
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1. Using Gaussian Elimination, we can find x s.t. Lx = d in O(n3) time and with asymptotically
faster algorithms based on matrix multiplication, we can bring this down to roughly O(n2.372).

2. Meanwhile Gradient Descent will get a running time of O(n3m) or so – at least this is a what
a simple analysis suggests.

3. However, we can do much better: By combining ideas from both algorithms, and a bit more,
we can get x up to very high accuracy in time O(m logc n) where c is some small constant.

3 Convex optimization

Recall our plot in Figure 7 of the energy required to route a flow f across a resistor with resistance
r, which was E(f) = r · f2. We see that the function has a special structure: the graph of the
function sits below the line joining any two points (f, E(f)) and (g, E(g)). A function E : R → R
that has this property is said to be convex.

Figure 8 shows a the energy as a function of flow, along with two points (f, E(f)) and (g, E(g)).
We see the function sits below the line segment between these points.

Figure 8: Energy has a function of flow in a resistor with resistance r = 1. The function is convex.

We can also interpret this condition as saying that for all θ ∈ [0, 1]

E(θf + (1− θ)g) ≤ θE(f) + (1− θ)E(g).

This immediately generalizes to functions E : Rm → R.

A convex set is a subset of S ⊆ Rm s.t. if f , g ∈ S then for all θ ∈ [0, 1] we have θf + (1− θ)g ∈ S.

Figure 9 shows some examples of sets that are and aren’t convex.
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A B C

Figure 9: A depiction of convex and non-convex sets. The sets A and B are convex since the
straight line between any two points inside them is also in the set. The set C is not convex.

Convex functions and convex sets are central to optimization, because for most problems of mini-
mization a convex function over a convex set, we can develop fast algorithms 3.

So why convex functions and convex sets? One important reason is that for a convex function
defined over a convex feasible set, any local minimum is also a global minimum, and this fact
makes searching for an optimal solution computationally easier. In fact, this is closely related to
why Gradient Descent works well on many convex functions.

Notice that the set {f : Bf = d} is convex, i.e. the set of all flows that route a fixed demand d is
convex. It is also easy to verify that E(f ) =

∑
e r(e)f (e)2 is a convex function, and hence finding

an electrical flow is an instance of convex minmization:

4 More graph optimization problems

Maximum flow. Again, let G = (V,E) be an undirected, connected graph with n vertices and
m edges. Suppose we want to find a flow f ∈ RE that routes d , but instead of trying to minimize
electrical energy, we try to pick an f that minimizes the largest amount of flow on any edge, i.e.
maxe |f e| – which we also denote by ‖f ‖∞. We can write this problem as

min
f ∈RE

‖f ‖∞

s.t. Bf = d

This problem is known as the Minimum Congested Flow Problem4. It is equivalent to the more
famous Maximum Flow Problem.

3 There are some convex optimization problems that are NP-hard. That said, polynomial time algorithms exist
for almost any convex problem you can come up with. The most general polynomial time algorithm for convex
optimization is probably the Ellipsoid Method.

4This version is called undirected, because the graph is undirected, and uncapacitated because we are aiming for
the same bound on the flow on all edges.
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The behavior of this kind of flow is very different than electrical flow. Consider the question of
whether a certain demand can be routed ‖f ‖∞ ≤ 1. Imagine sending goods from a source s to a
destination t using a network of train lines that all have the same capacity and asking whether the
network is able to route the goods at the rate you want: This boils down to whether routing exists
with ‖f ‖∞ ≤ 1, if we set it up right.

We have a very fast, convex optimization-based algorithm for Minimum Congested Flow: In

mε−1 logO(1) n time, we can find a flow f̃ s.t. Bf̃ = d and
∥∥∥f̃ ∥∥∥

∞
≤ (1 + ε) ‖f ∗‖∞, where f ∗

is an optimal solution, i.e. an actual minimum congestion flow routing d .

But what if we want ε to be very small, e.g. 1/m? Then this running time isn’t so good anymore.
But, in this case, we can use another algorithm, that finds an optimal flow f ∗ exactly, in time5

m10/7 logO(1) n.

Just as the electrical flow problem had a dual voltage problem, so maximum flow has a dual voltage
problem, which is know as the s-t minimum cut problem.

Maximum flow, with directions and capacities. We can make the maximum flow problem
harder by introducing directed edges: To do so, we allow edges in both directions to exist between
a vertex to exist, and we require that that flow on a directed edge is always non-negative. So now
G = (V,E) is a directed graph. We can also make the problem harder by introducing capacities.
We define a capacity vector c ∈ RE ≥ 0 and require now try to minimize

∥∥C−1f ∥∥∞, where
C = diage∈E c(e). Then our problem becomes

min
f ∈RE

∥∥C−1f ∥∥∞
s.t. Bf = d

f ≥ 0.

For this capacitated, directed maximum flow problem, our best algorithms run in about O(m
√
n)

time6, even if we are willing to accept fairly low accuracy solution. If the capacities are allowed to
be exponentially large, the best running time we can get is O(mn). For this problem, we do not
yet know how to improve over classical combinatorial algorithms using convex optimization.

Multi-commodity flow. We can make the even harder still, by simultaneously trying to route
to types of flow (imagine pipes with Coke and Pepsi). Our problem now looks like

min
f 1,f 2∈RE

∥∥C−1(f 1 + f 2)
∥∥
∞

s.t. Bf 1 = d1

Bf 2 = d2

f 1, f 2 ≥ 0.

Solving this problem to high accuracy is essentially as hard as solving a general linear program!
We should see later in the course how to make this statement precise.

5And there’s even a paper on arXiv.org that brings this further down to m11/8 logO(1) n.
6Provided the capacities are integers satisfying a condition like c ≤ n1001.

10



If we in the above problem additionally require that our flows must be integer valued, i.e. f 1, f 2 ∈
N0, then the problem becomes NP-complete.

Random walks in a graph. Google famously uses7 the PageRank problem to help decide how to
rank their search results. This problem essentially boils down to computing the stable distribution
of a random walk on a graph. Suppose G = (V,E) is a directed graph where each edge outgoing
edge (v, u), which we will define as going from u to v, has a transition probability p(v,u) > 0 s.t.∑

z←u p(z,u) = 1. We can take a step of a random walk on the vertex set by starting at some vertex
u0 = u, and then randomly picking one of it the outgoing edges (v, u) with probability p(v,u) and
move to the chosen vertex u1 = v. Repeating this procedure, to take a step from the next vertex
u1, gives us a random walk in the graph, a sequence of vertices u0, u1, u2 . . . , uk.

We let P ∈ RV×V be the matrix of transition probabilities given by

Pvu =

{
p(v,u) for (u, v) ∈ E
0 o.w.

Any probability distribution over the vertices can be specified by a vector p ∈ RV where p ≥ 0 and∑
v p(v) = 1. We say that probability distribution π on the vertices is a stable distribution of the

random walk if π = Pπ. A strongly connected graph always has exactly one stable distribution.

How quickly can we compute the stable distribution of a general random walk? Under some mild
conditions on the stable distribution8, we can find a high accuracy approximation of π in time
O(m logc n) for some constant c.

This problem does not easily fit in a framework of convex optimization, but nonetheless, our fastest
algorithms for it use ideas from convex optimization.

Topics in this course

In this course, we will try to address the following questions.

1. What are the fundamental tools of fast convex optimization?

2. What are some problems we can solve quickly on graphs using optimization?

3. What can graphs teach us about convex optimization?

4. What algorithm design techniques are good for getting algorithms that quickly find a crude
approximate solution? And what techniques are best when we need to get a highly accurate
answer?

5. What is special about flow problems?

7At least they did at some point.
8Roughly something like maxv 1/π(v) ≤ n100.
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