
Advanced Graph Algorithms and Optimization Spring 2020

Some Basic Optimization, Convex Geometry, and Linear Algebra

Rasmus Kyng Lecture 2 — Wednesday, February 26

1 Overview

In these lecture notes we will

1. Start with an overview (i.e. this list).

2. Learn some basic terminology and facts about optimization.

3. Recall our definition of convex functions and see how convex functions can also be understood
in terms of a characterization based on first derivatives.

4. See how the first derivatives of a convex function can certify that we are at a global minimum.

5. Review some standard linear algebra that we will need in later lectures.

2 Optimization Problems

Focusing for now on optimization over x ∈ Rn, we usually write optimization problems as:

min
x∈Rn

(or max) f(x )

s.t. g1(x ) ≤ b1
.

.

.

gm(x ) ≤ bm

where {gi(x )}mi=1 encode the constraints. For example, in the following optimization problem from
the previous lecture

min
f ∈RE

∑
e

r(e)f (e)2

s.t. Bf = d

we have the constraint Bf = d . Notice that we can rewrite this constraint as Bf ≤ d and
−Bf ≤ −d to match the above setting. The set of points which respect the constraints is called
the feasible set.
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Definition 2.1. For a given optimization problem the set F = {x ∈ Rn : gi(x ) ≤ bi, ∀i ∈ [m]}
is called the feasible set. A point x ∈ F is called a feasible point, and a point x ′ /∈ F is called
an infeasible point.

Ideally, we would like to find optimal solutions for the optimization problems we consider. Let’s
define what we mean exactly.

Definition 2.2. For a maximization problem x ? is called an optimal solution if f(x ?) ≥ f(x ),
∀x ∈ F . Similarly, for a minimization problem x ? is an optimal solution if f(x ?) ≤ f(x ), ∀x ∈ F .

What happens if there are no feasible points? In this case, an optimal solution cannot exist, and
we say the problem is infeasible.

Definition 2.3. If F = ∅ we say that the optimization problem is infeasible. If F 6= ∅ we say
the optimization problem is feasible.

Figure 1

Consider three examples depicted in Figure 1:

(i) F = [a, b]

(ii) F = [a, b)

(iii) F = [a,∞)

In the first example, the minimum of the function is attained at b. In the second case the region is
open and therefore there is no minimum function value, since for every point we will choose, there
will always be another point with a smaller function value. Lastly, in the third example, the region
is unbounded and the function decreasing, thus again there will always be another point with a
smaller function value.

Sufficient Condition for Optimality. The following theorem, which is a fundamental theorem
in real analysis, gives us a sufficient (though not necessary) condition for optimality.
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Theorem (Extreme Value Theorem). Let f : Rn → R be a continuous function and F ⊆ Rn be
nonempty, bounded, and closed. Then, the optimization problem min f(x ) : x ∈ F has an optimal
solution.

3 A Characterization of Convex Functions

Recall the definitions we introduced in the first lecture of convex sets and convex functions:

Definition 3.1. A set S ⊆ Rn is called a convex set if any two points in S contain their line,
i.e. for any x ,y ∈ S we have that θx + (1− θ)y ∈ S for any θ ∈ [0, 1].

Definition 3.2. For a convex set S ⊆ Rn, we say that a function f : S → R is convex on S if
for any two points x ,y ∈ S and any θ ∈ [0, 1] we have that:

f (θx + (1− θ)y) ≤ θf(x ) +
(

1− θ
)
f(y).

Figure 2: This plot shows the function f(x, y) = xy. For any fixed y0, the function h(x) =
f(x, y0) = xy0 is this is linear in x, and so is a convex function in x. But is f convex?

We will first give an important characterization of convex function. To do so, we need to characterize
multivariate functions via their Taylor expansion.

Notation for this lecture. In this lecture, we frequently consider a multivariate functions f
whose domain is a set S ⊆ Rn, which we will require to be open. When we additionally require
that S is convex, we will specify this. Note that S = Rn is both open and convex and it suffices
to keep this case in mind. Things sometimes get more complicated if S is not open, e.g. when the
domain of f has a boundary. We will leave those complications for another time.

3.1 First-order Taylor approximation

Definition 3.3. The gradient of a function f : S → R at point x ∈ S is denoted ∇f(x ) is:

∇f(x ) =

[
∂f(x )

∂x (1)
, . . . ,

∂f(x )

∂x (n)

]>
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First-order Taylor expansion. For a function f : R→ R of a single variable, differentiable at
x ∈ R

f(x+ δ) = f(x) + f ′(x)δ + o(|δ|)

where by definition:

lim
δ→0

o(|δ|)
|δ|

= 0.

Similarly, a multivariate function f : S → R is said to be (Fréchet) differentiable at x ∈ S when
there exists ∇f(x ) ∈ Rn s.t.

lim
δ→0

∥∥f(x + δ)− f(x )−∇f(x )>δ
∥∥
2

‖δ‖2
= 0.

Note that this is equivalent to saying that f(x + δ) = f(x ) + ∇f(x )>δ + o(‖δ‖2).

We say that f is continuously differentiable on a set S ⊆ Rn if it is differentiable and in addition
the gradient is continuous on S. A differentiable convex function whose domain is an open convex
set S ⊆ Rn is always continuously differentiable1.

Remark. In this course, we will generally err on the side of be informal about functional analysis
when we can afford to, and we will not worry too much about the about details of different notions
of differentiability (e.g. Fréchet and Gateaux differentiability), except when it turns out to be
important.

Theorem 3.4 (Taylor’s Theorem, multivariate first-order remainder form). If f : S → R is
continuously differentiable over [x ,y ], then for some z ∈ [x ,y ],

f(y) = f(x ) + ∇f(z )>(y − x ).

This theorem is useful for showing that the function f can be approximated by the affine function
y → f(x ) + ∇f(x )>(y − x ) when y is “close to” x in some sense.

Figure 3: The convex function f(y) sits above the linear function in y given by
f(x ) + ∇f(x )>(y − x ).

1See p. 248, Corollary 25.5.1 in Convex Analysis by Rockafellar (my version is the Second print,
1972). Rockefellar’s corollary concerns finite convex functions, because he otherwise allows convex functions that

may take on the values ±∞.

4



3.2 Directional derivatives

Definition 3.5. Let f : S → R be a function differentiable at x ∈ S and let us consider d ∈ Rn.
We define the derivative of f at x in direction d as:

Df(x )[d ] = lim
λ→0

f(x + λd)− f(x )

λ

Proposition 3.6. Df(x )[d ] = ∇f(x )>d .

Proof. Using the first order expansion of f at x :

f(x + λd) = f(x ) + ∇f(x )>(λd) + o(‖λd‖2)

hence, dividing by λ (and noticing that ‖λd‖ = λ ‖d‖2):

f(x + λd)− f(x )

λ
= ∇f(x )>d + o(λ ‖d‖2)

letting λ go to 0 concludes the proof.

3.3 Lower bounding convex functions with affine functions

In order to prove the characterization of convex functions in the next section we will need the
following lemma. This lemma says that any differentiable convex function can be lower bounded
by an affine function.

Figure 4: The convex function f(y) sits above the linear function in y given by
f(x ) + ∇f(x )>(y − x ).

Theorem 3.7. Let S be an open convex subset of Rn, and let f : S → R be a differentiable function.
Then, f is convex if and only if for any x ,y ∈ S we have that f(y) ≥ f(x ) + ∇f(x )>(y − x ).

Proof. [ =⇒ ] Assume f is convex, then for all x,y ∈ S and θ ∈ [0, 1], if we let z = θy + (1− θ)x ,
we have that

f(z) = f((1− θ)x + θy) ≤ (1− θ)f(x ) + θf(y)
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and therefore by subtracting f(x ) from both sides we get:

f (x + θ(y − x ))− f(x ) ≤ θf(y) + (1− θ)f(x )− f(x )

= θf(y)− θf(x ).

Thus we get that (for θ > 0):

f (x + θ(y − x ))− f(x )

θ
≤ f(y)− f(x )

Applying Proposition 3.6 with d = x − y we have that:

∇f(x )>(y − x ) = lim
θ→0+

f(x + θ(y − x ))− f(x )

θ
≤ f(y)− f(x ).

[⇐= ] Assume that f(y) ≥ f(x ) +∇f(x )>(y − x ) for all x,y ∈ S and show that f is convex. Let
x,y ∈ S and z = θy + (1− θ)x . By our assumption we have that:

f(y) ≥ f(z ) + ∇f(z )>(y − z) (1)

f(x ) ≥ f(z ) + ∇f(z )>(x − z) (2)

Observe that y − z = (1 − θ)(y − x ) and x − z = θ(y − x ). Thus adding θ times (1) to (1 − θ)
times (2) gives cancellation of the vectors multiplying the gradient, yielding

θf(y) + (1− θ)f(x ) ≥ f(z ) + ∇f(z )>0

= f(θy + (1− θ)x )

This is exactly the definition of convexity.

4 Conditions for optimality

We now want to find necessary and sufficient conditions for local optimality.

Definition 4.1. Consider a differentiable function f : S → R. A point x ∈ S at which ∇f(x ) =
0 is called a stationary point.

Proposition 4.2. If x is a local extremum of a differentiable function f : S → R then ∇f(x ) = 0.

Proof. Let us assume that x is a local minimum for f . Then for all d ∈ Rn, f(x ) ≤ f(x + λd) for
λ small enough. Hence:

0 ≤ f(x + λd)− f(x ) = λ∇f(x )>d + o(‖λd‖)

dividing by λ > 0 and letting λ→ 0+, we obtain 0 ≤∇f(x )>d . But, taking d = −∇f(x ), we get
0 ≤ −‖∇f(x )‖22. This implies that ∇f(x ) = 0.

The case where x is a local maximum can be dealt with similarly.

Remark 4.3. For this proposition to hold, it is important that S is open.
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For convex functions however it turns out that a stationary point necessarily implies that the
function is at its minimum. Together with the proposition above, this says that for a convex
function on Rn a point is optimal if and only if it is stationary.

Proposition 4.4. Let S ⊆ Rn be an open convex set and let f : S → R be a differentiable and
convex function. If x is a stationary point then x is a global minimum.

Proof. From Theorem 3.7 we know that for all x ,y ∈ S : f(y) ≥ f(x ) + ∇f(x )(y − x ). Since
∇f(x ) = 0 this implies that f(y) ≥ f(x ). As this holds for any y ∈ S, x is a global minimum.

5 Linear Algebra Refresher

Semi-definiteness of a matrix. The following classification of symmetric matrices will be useful.

Definition 5.1. Let A by a symmetric matrix in Rn×n. We say that A is:

1. positive definite iff x>Ax > 0 for all x ∈ Rn \ {0};

2. positive semidefinite iff x>Ax ≥ 0 for all x ∈ Rn;

3. If neither A nor −A is positive semi-definite, we say that A is indefinite.

Example: indefinite matrix. Consider the following matrix A:

A :=

[
+4 −1
−1 −2

]

For x =

(
1
0

)
, we have x>Ax = 4 > 0. For x =

(
0
1

)
we have x>Ax = −2 < 0. A is therefore

indefinite.

The following theorem gives a useful characterization of (semi)definite matrices.

Theorem 5.2. Let A be a symmetric matrix in Rn×n.

1. A is positive definite iff all its eigenvalues are positive;

2. A is positive semidefinite iff all its eigenvalues are non-negative;

In order to prove this theorem, let us first recall the Spectral Theorem for symmetric matrices.

Theorem 5.3 (The Spectral Theorem for Symmetric Matrices). For all symmetric A ∈ Rn×n
there exist V ∈ Rn×n and a diagonal matrix Λ ∈ Rn×n s.t.

1. A = V ΛV >.

2. V >V = I (the n × n identity matrix). I.e. the columns of V form an orthonormal basis.
Furthermore, v i is an eigenvector of λi(A), the ith eigenvalue of A.
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3. Λii = λi(A).

Using the Spectral Theorem, we can show the following result:

Theorem 5.4 (The Courant-Fischer Theorem). Let A be a symmetric matrix in Rn×n, with eigen-
values λ1 ≤ λ2 ≤ . . . ≤ λn. Then

1.

λi = min
subspace W⊆Rn

dim(W )=i

max
x∈W,x 6=0

x>Ax

x>x

2.

λi = max
subspace W⊆Rn

dim(W )=n+1−i

min
x∈W,x 6=0

x>Ax

x>x

Theorem 5.2 is an immediate corollary of Theorem 5.4, since we can see that minimum value of
the quadratic form x>Ax over x ∈W = Rn is λ1(A) ‖x‖22.

Proof of Theorem 5.4. We start by showing Part 1.

Consider letting W = span {v1, . . . , v i}, and normalize x ∈ W so that ‖x‖2 = 1. Then x =∑i
j=1 c(j)v j for some vector c ∈ Ri with ‖c‖2 = 1.

Using the decomposition from Theorem 5.3 A = V ΛV > where Λ is a diagonal matrix of eigen-
values of A, which we take to be sorted in increasing order. Then x>Ax = x>V >ΛV x =
(V x )>Λ(V x ) =

∑i
j=1 λjc(j)2 ≤ λi ‖c‖22 = λi. So this choice of W ensures the maximizer cannot

achieve a value above λi.

But is it possible that the “minimizer” can do better by choosing a different W? Let T =
span {v i, . . . , vn}. As dim(T ) = n + 1 − i and dim(W ) = i, we must have dim(W ∩ T ) ≥ 1,
by a standard property of subspaces. Hence for any W of this dimension,

max
x∈W,x 6=0

x>Ax

x>x
≥ max

x∈W∩T,x 6=0

x>Ax

x>x

≥ min
subspace V⊆T

dim(V )=1

max
x∈V,x 6=0

x>Ax

x>x
= λi,

where the last equality follows from a similar calculation to our first one. Thus, λi can always be
achieved by the “maximizer” for all W of this dimension.

Part 2 can be dealt with similarly.

Example: a positive semidefinite matrix. Consider the following matrix A:

A :=

[
1 −1
−1 1

]
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For x =

(
1
1

)
, we have Ax = 0, so λ = 0 is an eigenvalue of A. For x =

(
1
−1

)
, we have

Ax =

(
2
−2

)
= 2x , so λ = 2 is the other eigenvalue of A. As both are non-negative, by the

theorem above, A is positive semidefinite.

Since we are learning about symmetric matrices, there is one more fact that everyone should know
about them. We’ll use λmax(A) denote maximum eigenvalue of a matrix A, and λmin(A) the
minimum.

Claim 5.5. For a symmetric matrix A ∈ Rn×n, ‖A‖ = max(|λmax(A)| , |λmin(A)|).
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