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Introduction to Spectral Graph Theory

Rasmus Kyng Lecture 4 — Wednesday, March 11th

The incidence matrix, the Laplacian matrix, and the adjacency matrix. In Lecture 1,
we looked at undirected graphs and we introduce the incidence matrix and the Laplacian of the
graph. Let us recall these.

We consider an undirected weighted graph G = (V,E,w), with n = |V | vertices and m = |E| edges,
where w ∈ RE

+ assigns positive weight for every edge. Let’s assume G is connected.

To introduce the edge-vertex incidence matrix of the graph, we first have to associate an arbitrary
direction to every edge. We then let B ∈ RV×E .

B(v, e) =


1 if e = (u, v)

−1 if e = (v, u)

0 o.w.

The edge directions are only there to help us track the meaning of signs of quantities defined on
edges: The math we do should not depend on the choice of sign.

Let W ∈ RE×E be the diagonal matrix given by W = diag(w), i.e W (e, e) = w(e). We define
the Laplacian of the graph as L = BWB>. Note that in the first lecture, we define the Laplacian
as BR−1B>, where R is the diagonal matrix with edge resistances on the diagonal. We want to
think of high weight on an edge as expressing that two vertices are highly connected, whereas we
think of high resistance on an edge as expressing that the two vertices are poorly connected, so we
let w(e) = 1/R(e, e).

The weighted adjacency matrix A ∈ RV×V of a graph is given by

A(u, v) =

{
w(u, v) if {u, v} ∈ E
0 otherwise.

Note that we treat the edges as undirected here, so A> = A. The weighted degree of a vertex is
defined as d(v) =

∑
{u,v}∈E w(u, v). Again we treat the edges as undirected. Let D = diag(d) be

the diagonal matrix in RV×V with weighted degrees on the diagonal.

In Problem Set 1, you showed that L = D −A, and that for x ∈ RV ,

x>Lx =
∑
{a,b}∈E

w(a, b)(x (a)− x (b))2.

Now we can express the net flow constraint that f routes d by

Bf = d .

This is also called a conservation constraint. In our examples so far, we have d(s) = −1, d(t) = 1
and d(u) = 0 for all u ∈ V \ {s, t}.

If we let R = diage∈E r(e) then Ohm’s law tells us that f = R−1B>x .
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The Courant-Fisher Theorem. Let us also recall the Courant-Fischer theorem that proved in
Lecture 2.

Theorem 0.1 (The Courant-Fischer Theorem). Let A be a symmetric matrix in Rn×n, with eigen-
values λ1 ≤ λ2 ≤ . . . ≤ λn. Then

1.

λi = min
subspace W⊆Rn

dim(W )=i

max
x∈W,x 6=0

x>Ax

x>x

2.

λi = max
subspace W⊆Rn

dim(W )=n+1−i

min
x∈W,x 6=0

x>Ax

x>x

In fact, from our proof of the Courant-Fischer theorem in Lecture 2, we can also extract a slightly
different statement:

Theorem 0.2 (The Courant-Fischer Theorem, eigenbasis version). Let A be a symmetric matrix
in Rn×n, with eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn, and corresponding eigenvectors x 1,x 2, . . . ,xn which
form an othernormal basis. Then

1.

λi = min
x⊥x1,...x i−1

x 6=0

x>Ax

x>x

2.

λi = max
x⊥x i+1,...xn

x 6=0

x>Ax

x>x

Of course, we also have λi(A) =
x>i Ax i

x>i x i
.

1 Understanding Eigenvalues of the Laplacian

We would like to understand the eigenvalues of the the Laplacian.

Let us start by considering the n vertex complete graph with unit weights, which we denote by
Kn. The adjacency matrix of Kn is A = 11> − I , since it has ones everywhere, except for
the diagonal, where entries are zero. The degree matrix D = (n − 1)I . Thus the Laplacian is
L = D −A = nI − 11>.

Thus for any y ⊥ 1, we have y>Ly = ny>y − (1>y)2 = ny>y .

From this, we can conclude that any y ⊥ 1 is an eigenvector of eigenvalue n, and that all λ2 =
λ3 = . . . = λn = n.

Next, let us try to understand λ2 and λn for Pn, the n vertex path graph with unit weight edges.
I.e. the graph has edges E = {{i, i+ 1} for i = 1 to (n− 1)}.

This is in a sense the least well-connected unit weight graph on n vertices, whereas Kn is the most
well-connected.
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1.1 Test Vector Bounds on λ2 and λn

We can use the eigenbasis version of the Courant-Fisher theorem to observe that the second-smallest
eigenvalue of the Laplacian is given by

λ2(L) = min
x 6=0

x>1=0

x>Lx

x>x
. (1)

We can get a better understand this particular case through a couple of simple observations.
Suppose x = y + α1, where y ⊥ 1. Then x>Lx = y>Ly , and ‖x‖22 = ‖y‖2 + α2 ‖1‖2. So for

any given vector, you can increase the value of x>Lx
x>x

, by instead replacing x with the component
orthogonal to x , which we denoted by y .

We can conclude from Equation (2) that for any vector y ⊥ 1,

λ2 ≤
y>Ly

y>y

When we use a vector y in this way to prove a bound on an eigenvalue, we call it a test vector.

Now, we’ll use a test vector to give an upper bound on λ2(LPn). Let x ∈ RV be given by x (i) =
(n + 1) − 2i, for i ∈ [n]. This vector satisfies x⊥1. We picked this because we wanted a sequence
of values growing linearly along the path, while also making sure that the vector is orthogonal to
1. Now

λ2(LPn) ≤
∑

i∈[n−1](x (i)− x (i+ 1))2∑n
i=1 x (i)2

=

∑n−1
i=1 22∑n

i=1(n+ 1− 2i)2

=
4(n− 1)

(n+ 1)n(n− 1)/3

=
12

n(n+ 1)
≤ 12

n2
.

Later, we will prove a lower bound that shows this value is right up to a constant factor. But the
test vector approach based on the Courant-Fischer theorem doesn’t immediately work when we
want to prove lower bounds on λ2(L).

We can see from either version of the Courant-Fischer theorem that

λn(L) = max
v 6=0

v>Lv

v>v
. (2)

Thus for any vector y 6= 0,

λn ≥
y>Ly

y>y
.

This means get a test vector-based lower bound on λn. Let us apply this to the Laplacian of Pn.
We’ll try the vector x ∈ RV be given by x (1) = −1, and x (n) = 1 and x (i) = 0 for i 6= 0, 1.
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Here we get

λn(LPn) ≥ y>Ly

y>y
=

2

2
= 1.

Again, it’s not clear how to use the Courant-Fischer theorem to prove an upper bound on λn(L).
But, later we’ll see how to prove an upper that shows that for Pn, the lower bound we obtained is
right up to constant factors.
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