
Advanced Graph Algorithms and Optimization Spring 2020

Random Matrix Concentration and Spectral Graph Sparsification

Rasmus Kyng, Scribe: Hongjie Chen Lecture 8 — Wednesday, April 8th

1 Matrix Concentration

Last time, we saw the Bernstein matrix concentration bound (Tropp 2011), i.e.,

Theorem 1.1. Suppose X 1, . . . ,X k ∈ Rn×n are independent, symmetric matrix-valued random
variables. Assume each X i is zero-mean, i.e. E [X i] = 0n×n, and that ‖X i‖ ≤ R always. Let
X =

∑
i X i, and σ2 = ‖V ar [X] ‖ = ‖

∑
i E
[
X 2

i

]
‖, then for t > 0

Pr[‖X ‖ ≥ t] ≤ 2n exp

(
−t2

2Rt+ 4σ2

)
.

In this section, we’ll prove this theorem. But let’s collect some useful tools for the proof first.

Definition 1.2 (trace). The trace of a square matrix A is defined as

Tr (A) :=
∑
i

A(i, i)

Claim 1.3 (cyclic property of trace). Tr (AB) = Tr (BA)

Let Sn denote the set of all n × n real symmetric matrices, Sn+ the set of all n × n positive
semidefinite matrices, and Sn++ the set of all n × n positive definite matrices. Their relation is
clear, Sn++ ⊂ Sn+ ⊂ Sn. For any A ∈ Sn with eigenvalues λ1(A) ≤ · · · ≤ λn(A), by spectral
decomposition theorem, A = V ΛV > where Λ = diagi{λi(A)} and V >V = V V > = I , we’ll use
this property without specifying in the sequel.

Claim 1.4. Given a symmetric and real matrix A, Tr (A) =
∑

i λi, where {λi} are eigenvalues of
A.

Proof.

Tr (A) = Tr
(

V ΛV >
)

= Tr

Λ V >V︸ ︷︷ ︸
I

 = Tr (Λ) =
∑
i

λi.

1.1 Matrix Functions

Definition 1.5 (Matrix function). Given a real-valued function f : R → R, we extend it to a
matrix function f : Sn → Sn. For A ∈ Sn with spectral decomposition A = V ΛV >, let

f(A) = V diag
i
{f(λi)}V >.

c

1

Example. Recall that every PSD matrix A has a square root A1/2. If f(x) = x1/2 for x ∈ R+,
then f(A) = A1/2 for A ∈ Sn+.

Example. If f(x) = exp(x) for x ∈ R, then f(A) = exp(A) = V exp(Λ)V > for A ∈ Sn. Note
that exp(A) is positive definite for any A ∈ Sn.

1.2 Monotonicity and Operator Monotonicity

Cosider a function f : D → C. If we have a partial order ≤D defined on D and a partial order ≤C
defined on C, then we say that the function is monotone increasing (resp. decreasing) w.r.t. this
pair of orderings if for all d1, d2 ∈ D s.t. d1 ≤D d2 we have f(d1) ≤C f(d2) (resp. decreasing if
f(d2) ≤C f(d1)).

Let’s introduce some terminonology for important special cases of this idea. We say that a function
f : S → R, where S ⊆ Sn, is monotone increasing if A � B implies f(A) ≤ f(B).

Meanwhile, a function f : S → T where S, T ⊆ Sn is said to be operator monotone increasing if
A � B implies f(A) � f(B).

Lemma 1.6. Let T ⊆ R. If the scalar function f : T → R is monotone increasing, the matrix
function X 7→ Tr (f(X)) is monotone increasing.

Proof. From previous lectures, we know if A � B then λi(A) ≤ λi(B) for all i. As x 7→ f(x) is
monotone, then λi(f(A)) ≤ λi(f(B)) for all i. By Claim 1.4, Tr (f(A)) ≤ Tr (f(B)).

From this, and the fact that x 7→ exp(x) is a monotone function on the reals, we get the following
corollary.

Corollary 1.7. If A � B , then Tr (exp(A)) ≤ Tr (exp(B)), i.e. X 7→ Tr (exp(X)) is monotone
increasing.

Lemma 1.8. If 0 ≺ A � B , then B−1 � A−1, i.e. X 7→ X−1 is operator monotone decreasing
on Sn++.

You will prove the above lemma in this week’s exercises.

Lemma 1.9. If 0 ≺ A � B , then log(A) � log(B).

To prove this lemma, we first recall an integral representation of the logarithm.

Lemma 1.10.

log a =

∫ ∞
0

(
1

1 + t
− 1

a+ t

)
dt

Proof. ∫ ∞
0

(
1

1 + t
− 1

a+ t

)
dt = lim

T→∞

∫ T

0

(
1

1 + t
− 1

a+ t

)
dt

= lim
T→∞

[log(1 + t)− log(a+ t)]T0

2

= log(a) + lim
T→∞

log

(
1 + T

a+ T

)
= log(a)

Proof sketch of Lemma 1.9. Because all the matrices involved are diagonalized by the same orthog-
onal transformation, we can conclude from Lemma 1.10 that for a matrix A � 0,

log(A) =

∫ ∞
0

(
1

1 + t
I − (tI + A)−1

)
dt

This integration can be expressesd as the limit of a sum with positive coefficients, and from this
we can show that is the integrand (the term inside the integration symbol) is operator monotone
increasing in A by Lemma 1.8, the result of the integral, i.e. log(A) must also be operator monotone
increasing.

Lemma 1.11. Let T ⊂ R. If the scalar function f : T → R is monotone, the matrix function
X 7→ Tr (f(X)) is monotone.

Remark 1.12. It is not always true that when f : R → R is monotone, f : Sn → Sn is operator
monotone. For example, X 7→ X 2 and X 7→ exp(X) are not operator monotone.

1.3 Some Useful Facts

Lemma 1.13. exp(A) � I + A + A2 for ‖A‖ ≤ 1.

Proof.

I + A + A2 − exp(A) = V I V > + V ΛV > + V Λ2V > −V exp(Λ)V >

= V
(
I + Λ + Λ2 − exp(Λ)

)
V >

= V diag
i
{1 + λi + λ2i − exp(λi)}V >

Recall exp(x) ≤ 1 + x+ x2 for all |x| ≤ 1. Since ‖A‖ ≤ 1 i.e. |λi| ≤ 1 for all i, thus 1 + λi + λ2i −
exp(λi) ≥ 0 for all i, meaning I + A + A2 − exp(A) � 0.

Lemma 1.14. log(I + A) � A for A � −I .

Proof.

A− log(I + A) = V ΛV > −V log(Λ + I)V >

= V (Λ− log(Λ + I)) V >

= V diag
i
{λi − log(1 + λi)}V >

Recall x ≥ log(1+x) for all x > −1. Since ‖A‖ � −I i.e. λi > −1 for all i, thus λi− log(1+λi) ≥ 0
for all i, meaning A− log(I + A) � 0.

3

Theorem 1.15 (Lieb). Let f : Sn++ → < be a matrix function given by

f(A) = Tr (exp (H + log(A)))

for some H ∈ Sn. Then −f is convex (i.e. f is concave).

The Lieb’s theorem will be crucial in our proof of Theorem 1.1, but it is also highly non-trivial and
we will omit its proof here. The interested reader can find a proof in Chapter 8 of [T+15].

Lemma 1.16 (Jensen’s inequality). E [f(X)] ≥ f(E [X]) when f is convex; E [f(X)] ≤ f(E [X])
when f is concave.

1.4 Proof of Matrix Bernstein Concentration Bound

Now, we are ready to prove the Bernstein matrix concentration bound.

Proof of Theorem 1.1. For any A ∈ Sn, its spectral norm ‖A‖ = max{|λn(A)|, |λ1(A)|} =
max{λn(A),−λ1(A)}. Let λ1 ≤ · · · ≤ λn be the eigenvalues of X . Then,

Pr[‖X ‖ ≥ t] = Pr
[
(λn ≥ t)

∨
(−λ1 ≥ t)

]
≤ Pr[λn ≥ t] + Pr[−λ1 ≥ t].

Let Y :=
∑

i−X i. It’s easy to see that −λn ≤ · · · ≤ −λ1 are eigenvalues of Y , implying
λn(Y) = −λ1(X). Since E [−X i] = E [X i] = 0 and ‖−X i‖ = ‖X i‖ ≤ R for all i, if we can bound
Pr[λn(X) ≥ t], then applying to Y , we can bound Pr[λn(Y) ≥ t]. As

Pr[−λ1(X) ≥ t] = Pr[λn(Y) ≥ t],

it suffices to bound Pr[λn ≥ t].

For any θ > 0, λn ≥ t ⇐⇒ exp(θλn) ≥ exp(θt) and Tr (exp(θX)) =
∑

i exp(θλi) by Claim 1.4,
thus λn ≥ t⇒ Tr (exp(θX)) ≥ exp(θt). Then, using Markov’s inequality,

Pr[λn ≥ t] ≤ Pr[Tr (exp(θX)) ≥ exp(θt)]

≤ exp(−θt)E [Tr (exp(θX))]

For two independent random variables U and V , we have

E
U ,V

f(U ,V) = E
U

E
V

[f(U ,V)|U] = E
U

E
V

[f(U ,V)] .

Define X<i =
∑

j<i X j . Let 0 < θ ≤ 1/R,

ETr (exp(θX)) = E
X 1,...,X k−1

E
X k

Tr exp

θX<k︸ ︷︷ ︸
H

+ θX k︸︷︷︸
=log exp(θX k)

 , {X i} are independent

≤ E
X 1,...,X k−1

Tr exp

(
θX<k + log E exp(θX k)

)
, by 1.15 and 1.16

≤ E
X 1,...,X k−1

Tr exp
(
θX<k + logE

[
I + θX k + θ2X 2

k

])
, by 1.13, 1.7, and 1.9

4

≤ E
X 1,...,X k−1

Tr exp

(
θX<k + θ2 EX 2

k

)
, by 1.14 and 1.7

= E
X 1,...,X k−2

E
X k−1

Tr exp

θ2 EX 2
k + θX<k−1︸ ︷︷ ︸

H

+θX k−1

 ,

...

≤ Tr exp

(
θ2
∑
i

E
[
X 2

i

])
,

≤ Tr exp
(
θ2σ2I

)
, by 1.7 and

∑
i

E
[
X 2

i

]
� σ2I

= n · exp(θ2σ2).

Then,
Pr[λn ≥ t] ≤ n · exp(−θt+ θ2σ2),

and
Pr[‖X ‖ ≥ t] ≤ 2n · exp(−θt+ θ2σ2).

Similar to the proof of Bernstein concentration bound for one-dimension random variable, minimize
the RHS over 0 < θ ≤ 1/R yields

Pr[‖X ‖ ≥ t] ≤ 2n · exp

(
−t2

2Rt+ 4σ2

)
.

2 Spectral Graph Sparsification

In this section, we will see that for any dense graph, we can find another sparser graph whose graph
Laplacian is approximately the same as measured by their quadratic forms. This turns out to be a
very useful tool for designing algorithms.

Definition 2.1. Given A,B ∈ Sn+ and ε > 0, we say

A ≈ε B if and only if
1

1 + ε
A ≤ B ≤ (1 + ε)A.

Suppose we start with a connected graph G = (V,E,w), where as usual we say that |V | = n and

|E| = m. We want to produce another graph G̃ = (V, Ẽ, w̃) s.t
∣∣∣Ẽ∣∣∣ � |E| and at the same time

LG ≈ε LG̃. We call G̃ a spectral sparsifier of G. Our construction will also ensure that Ẽ ⊆ E,
although this is not important in most applications. Figure 1 shows an example of a graph G and
spectral sparsifier G̃.

We are going to construct G̃ by sampling some of the edges of G according to a suitable probability
distribution and scaling up their weight to make up for the fact that we pick fewer of them.

5

Figure 1: A graph G and a spectral sparsifier G̃ , satisfisying LG ≈ε LG̃ for ε = 2.42.

To get a better understanding for the notion of approximation given in 2.1 means, let’s observe a
simple consequence of it.

Given a vertex subset T ⊆ V , we say that (T, V \ T) is a cut in G and that the value of the cut is

cG(T) =
∑

e∈E∩(T×V \T)

w(e).

Figure 2 shows the cG(T) in a graph G.

Figure 2: The cut cG(T) in G.

Theorem 2.2. If LG ≈ε LG̃, then for all T ⊆ V ,

1

1 + ε
cG(T) ≤ cG̃(T) ≤ (1 + ε)cG(T).

Proof. Let 1T ∈ RV be the indicator of the set T , i.e. 1T (u) = 1 for u ∈ V and 1T (u) = 0
otherwise. We can see that 1>TLG1T = cG(T), and hence the theorem follows by comparing the
quadratic forms.

But how well can we spectrally approximate a graph with a sparse graph? The next theorem gives
us a nearly optimal answer to this question.

6

Theorem 2.3 (Spectral Graph Approximation by Sampling, (Spielman-Srivastava 2008)). Con-
sider a connected graph G = (V,E,w), with n = |V |. For any 0 < ε < 1 and 0 < δ < 1, there
exist sampling probabilities pe for each edge e ∈ E s.t. if we include each edge e in Ẽ independently
with probabilty pe and set its weight w̃(e) = 1

pe
w(e), then with probability at least 1 − δ the graph

G̃ = (V, Ẽ, w̃) satisfies

LG ≈ε LG̃ and
∣∣∣Ẽ∣∣∣ ≤ O(nε−2 log(n/δ)).

The original proof can be found in [SS11].

Remark 2.4. For convenience, we will abbreviate LG as L and LG̃ as L̃ in the rest of this section.

We are going to analyze a sampling procedure by turning our goal into a problem of matrix con-
centration. Recall that

Fact 2.5. A � B implies CAC> � CBC> for any C ∈ Rn×n.

By letting C = L+/2, we can see that

L ≈ε L̃ implies ΠL ≈ε L+/2L̃L+/2, (1)

where ΠL = L+/2LL+/2 is the orthogonal projection to the complement of the kernel of L.

Definition 2.6. Given a matrix A, we define ΠA to be the orthogonal projection to the complement
of the kernel of A, i.e. ΠAv = 0 for v ∈ ker(A) and ΠAv = v for v ∈ ker(A)⊥. Recall that
ker(A)⊥ = im(A>).

Claim 2.7. For a matrix A ∈ Sn with spectral decomposition A = V ΛV > =
∑

i λiv iv
>
i s.t.

V >V = I , we have ΠA =
∑

i:λi 6=0 v iv
>
i , and ΠA = A+/2AA+/2 = AA+ = A+A.

From the definition, we can see that ΠL = I − 1
n11>.

Now that we understand the projection ΠL, it is not hard to show the following claim.

Claim 2.8.

1. ΠL ≈ε L+/2L̃L+/2 implies L ≈ε L̃.

2. For ε ≤ 1, we have that
∥∥∥ΠL − L+/2L̃L+/2

∥∥∥ ≤ ε/2 implies ΠL ≈ε L+/2L̃L+/2.

Really, the only idea needed here is that when comparing quadratic forms in matrices with the same
kernel, we necessarily can’t have the quadratic forms disagree on vectors in the kernel. Simple! But
we are going to write it out carefully, since we’re still getting used to these types of calculations.

Proof of Claim 2.8. To prove Part 2, we assume ΠL ≈ε L+/2L̃L+/2. Recall that G is a connected
graph, so ker(L) = span {1}, while L̃ is the Laplacian of a graph which may or may not be
connected, so ker(L̃) ⊇ ker(L), and equivalently im(L̃) ⊆ im(L). Now, for any v ∈ ker(L) we have
v>L̃v = 0 = v>Lv . For any v ∈ ker(L)⊥ we have v = L+/2z for some z , as ker(L)⊥ = im(L) =
im(L+/2). Hence

v>L̃v = z>L+/2L̃L+/2z ≥ 1

1 + ε
z>L+/2LL+/2z =

1

1 + ε
v>Lv

7

and similarly

v>L̃v = z>L+/2L̃L+/2z ≤ (1 + ε)z>L+/2LL+/2z = (1 + ε)v>Lv .

Thus we have established L ≈ε L̃.

To prove Part 2, we assume
∥∥∥ΠL − L+/2L̃L+/2

∥∥∥ ≤ ε/2. This is equivalent to

− ε
2

I � L+/2L̃L+/2 −ΠL �
ε

2
I

But since
1>(L+/2L̃L+/2 −ΠL)1 = 0,

we can in fact sharpen this to

− ε
2
ΠL � L+/2L̃L+/2 −ΠL �

ε

2
ΠL.

Rearranging, we then conclude

(1− ε

2
)ΠL � L+/2L̃L+/2 � (1 +

ε

2
)ΠL.

Finally, we note that 1/(1 + ε) ≤ (1− ε
2) to reach our conclusion, ΠL ≈ε L+/2L̃L+/2.

We now have most of the tools to prove Theorem 2.3, but to help us, we are going to establish one
small piece of helpful notation: We define a matrix function Φ : Rn×n → Rn×n by

Φ(A) = L+/2AL+/2.

We sometimes call this a “normalizing map”, because it transforms a matrix to the space where
spectral norm bounds can be translated into relative error guarantees compare to the L quadratic
form.

Proof of Theorem 2.3. By Claim 2.8, it suffices to show∥∥∥ΠL − L+/2L̃L+/2
∥∥∥ ≤ ε/2. (2)

We introduce a set of independent random variables, one for each edge e, with a probability pe
associated with the edge which we will fix later. We then let

Y e =

{
w(e)
pe

beb
>
e with probability pe

0 otherwise.

This way, L̃ =
∑

e Y e. Note that E [Y e] = pe
w(e)
pe

beb
>
e = w(e)beb

>
e , and so

E
[
L̃
]

=
∑
e

E [Y e] = L.

By linearity of Φ,

E
[
Φ(L̃)

]
= Φ(E

[
L̃
]
) = ΠL.

8

Let us also define
X e = Φ(Y e)− E [Φ(Y e)] and X =

∑
e

X e

Note that this ensures E [X e] = 0. We are now going to fix the edge sampling probabilities, in a
way that depends on some overall scaling parameter α > 0. We let

pe = min
(
α
∥∥∥Φ
(

w(e)beb
>
e

)∥∥∥ , 1)
then we see from the definition of Y e that whenever pe < 1

‖Φ(Y e)‖ ≤
1

α

from this, we can conclude, with a bit of work, that for all e

‖X e‖ ≤
1

α
. (3)

We can also show that ∥∥∥∥∥∑
e

E
[
X 2

e

]∥∥∥∥∥ ≤ 1

α
. (4)

In the exercises for this lecture, we will ask you to show that Equations (3) and (4) holds.

This means that we can apply Theorem 1.1 to our X =
∑

e X e, with R = 1
α and σ2 = 1

α , to get

Pr
[∥∥∥ΠL − L+/2L̃L+/2

∥∥∥ ≥ ε/2] ≤ 2n exp

(
−0.25ε2

(ε+ 4)/α

)
Since 0 < ε < 1, this means that if α = 40ε−2 log(n/δ), then

Pr
[∥∥∥ΠL − L+/2L̃L+/2

∥∥∥ ≥ ε/2] ≤ 2nδ2

n2
≤ δ/2.

In the last step, we assumed n ≥ 4.

Lastly, we’d like to know that the graph G̃ is sparse. The number of edges in G̃ is equal to the

number of Y e that come out nonzero. Thus, the expected value of
∣∣∣Ẽ∣∣∣ is

E
[∣∣∣Ẽ∣∣∣] =

∑
e

pe ≤ α
∑
e

w(e)
∥∥∥L+/2beb

>
e L+/2

∥∥∥
We can bound the sum of the norms with a neat trick relating it to the trace of ΠL. Note that in
general for a vector aaa ∈ Rn, we have

∥∥aaaaaa>
∥∥ = aaa>aaa = Tr

(
aaaaaa>

)
. And hence∑

e

w(e)
∥∥∥L+/2beb

>
e L+/2

∥∥∥ =
∑
e

w(e)Tr
(

L+/2beb
>
e L+/2

)
= Tr

(
L+/2

(∑
e

w(e)beb
>
e

)
L+/2

)
= Tr (ΠL) = n− 1.

9

Thus with our choice of α,

E
[∣∣∣Ẽ∣∣∣] ≤ 40ε−2 log(n/δ)n.

With a scalar Chernoff bound, can show that
∣∣∣Ẽ∣∣∣ ≤ O(ε−2 log(n/δ)n) with probability at least

1 − δ/2. Thus by a union bound, the this condition and Equation (2) are both satisfied with
probability at least 1− δ.

Remark 2.9. Note that∥∥∥Φ
(

w(e)beb
>
e

)∥∥∥ = w(e)
∥∥∥L+/2beb

>
e L+/2

∥∥∥ ≤ w(e)
∥∥∥L+/2be

∥∥∥2
2
.

Recall that in Lecture 6, we saw that the effective between vertex v and vertex u is given by∥∥∥L+/2(eu − ev)
∥∥∥2
2
, and for an edge e connecting vertex u and v, we have be = eu − ev. That

means the norm of the “baby Laplacian” w(e)beb
>
e of a single edge with weight w(e) is exactly

w(e) times the effective resistance between the two endpoints of the edge.

We haven’t shown how to compute the sampling probabilities efficiently, so right now, it isn’t
clear whether we can efficiently find G̃. It turns out that if we have access to a fast algorithm
for solving Laplacian linear equations, then we can find sufficiently good approximations to the
effective resistances quickly, and use these to compute G̃. An algorithm for this is described in
[SS11].

References

[SS11] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
SIAM Journal on Computing, 40(6):1913–1926, 2011.

[T+15] Joel A Tropp et al. An introduction to matrix concentration inequalities. Foundations and
Trends R© in Machine Learning, 8(1-2):1–230, 2015.

10

	Matrix Concentration
	Matrix Functions
	Monotonicity and Operator Monotonicity
	Some Useful Facts
	Proof of Matrix Bernstein Concentration Bound

	Spectral Graph Sparsification

