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Solving Laplacian Linear Equations

Rasmus Kyng, Scribe: Hongjie Chen Lecture 9 — Wednesday, April 22nd

1 Solving Linear Equations Approximately

Given a Laplacian L of a connected graph and a demand vector d ⊥ 1, we want to find x ∗ solving
the linear equation Lx ∗ = d . We are going to focus on fast algorithms for finding approximate
(but highly accurate) solutions.

This means we need a notion of an approximate solution. Since our definition is not special to
Laplacians, we state it more generally for positive semi-definite matrices.

Definition 1.1. Given PSD matrix M and d ∈ ker(M )⊥, let Mx ∗ = d . We say that x̃ is an
ε-approximate solution to the linear equation Mx = d if

‖x̃ − x ∗‖2M ≤ ε ‖x
∗‖2M .

Remark 1.2. The requirement d ∈ ker(M )⊥ can be removed, but this is not important for us.

Theorem 1.3 (Spielman and Teng (2004) [ST04]). Given a Laplacian L of a weighted undirected
graph G = (V,E,w) with |E| = m and |V | = n and a demand vector d ∈ RV , we can find x̃ that is
an ε-approximate solution to Lx = d , using an algorithm that takes time O(m logc n log(1/ε)) for
some fixed constant c and succeeds with probability 1− 1/n10.

In the original algorithm of Spielman and Teng, the exponent on the log in the running time was
c ≈ 70.

Today, we are going to see a simpler algorithm. But first, we’ll look at one of the key tools behind
all algorithms for solving Laplacian linear equations quickly.

2 Preconditioning and Approximate Gaussian Elimination

Recall our definition of two positive semi-definite matrices being approximately equal.

Definition 2.1 (Spectral approximation). Given A,B ∈ Sn+, we say that

A ≈K B if and only if
1

1 +K
A � B � (1 +K)A.

Suppose we have a positive definite matrix M ∈ Sn++ and want to solve a linear equation Mx = d .
We can do this using gradient descent or accelerated gradient descent, as we covered in Graded
Homework 1. But if we have access to an easy-to-invert matrix that happens to also be a good
spectral approximation of M , then we can use this to speed up the (accelerated) gradient descent
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algorithm. An example of this would be that we have a factorization LL> ≈K M , where L is
lower triangular and sparse, which means we can invert it quickly.

The following lemma, which you will prove in Problem Set 6, makes this preconditioning precise.

Lemma 2.2. Given a matrix M ∈ Sn++, a vector d and a decomposition M ≈K LL>, we can
find x̃ that ε-approximately solves Mx = d , using O((1 +K) log(K/ε)(Tmatvec + Tsol + n)) time.

• Tmatvec denotes the time required to compute Mz given a vector z , i.e. a “matrix-vector
multiplication”.

• Tsol denotes the time required to compute L−1z or (L>)−1z given a vector z .

Dealing with pseudo-inverses. When our matrices have a null space, preconditioning becomes
slightly more complicated, but as long as it is easy to project to the complement of the null space,
there’s no real issue. The following describes precisely what we need (but you can ignore the
null-space issue when first reading these notes without losing anything significant).

Lemma 2.3. Given a matrix M ∈ Sn+, a vector d ∈ ker(M )⊥ and a decomposition M ≈K
LDL>, where L is invertible, we can find x̃ that ε-approximately solves Mx = d , using
O((1 +K) log(K/ε)(Tmatvec + Tsol + Tproj + n)) time.

• Tmatvec denotes the time required to compute Mz given a vector z , i.e. a “matrix-vector
multiplication”.

• Tsol denotes the time required to compute L−1z and (L>)−1z and D+z given a vector z .

• Tproj denotes the time required to compute ΠM z given a vector z .

Theorem 2.4 (Kyng and Sachdeva (2015) [KS16]). Given a Laplacian L of a weighted undirected
graph G = (V,E,w) with |E| = M and |V | = n, we can find a decomposition LL> ≈0.5 L, such
that L has number of non-zeroes nnz(L) = O(m log3 n), with probability at least 1− 3/n5. in time
O(m log3 n).

We can combine Theorem 2.4 with Lemma 2.3 to get a fast algorithm for solving Laplacian linear
equations.

Corollary 2.5. Given a Laplacian L of a weighted undirected graph G = (V,E,w) with |E| = m
and |V | = n and a demand vector d ∈ RV , we can find x̃ that is an ε-approximate solution to
Lx = d , using an algorithm that takes time O(m log3 n log(1/ε)) and succeeds with probability
1− 1/n10.

Proof sketch. First we need to get a factorization that confirms to Lemma 2.3. The decomposition
LL> provided by Theorem 2.4 can be rewritten as LL> = L̃D(L̃)> where L̃ is equal to L except
L(n, n) = 1 and we let D be the identity matrix, except D(n, n) = 0. This ensures D+ = D
and that L̃ is invertible and lower triagular with O(m log3 n log(1/ε)) non-zeros. We note that the
inverse of an invertible lower or upper triangular matrix with N non-zeros can be applied in time
O(N) given an adjacency list representation of the matrix. Finally, as ker(LL>) = span {1}, we
have ΠL̃D(L̃)> = I − 1

n11>, and this projection matrix can be applied in O(n) time. Altogether,

this means that Tmatvec + Tsol + Tproj = O(n), which suffices to complete the proof.
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3 Approximate Gaussian Elimination Algorithm

Recall Gaussian Elimination / Cholesky decomposition of a graph Laplacian L. We will use A(:, i)
to denote the the ith column of a matrix A. We can write the algorithm as

Algorithm 1: Gaussian Elimination / Cholesky Decomposition

Input: Graph Laplacian L
Output: Lower triangular L s.t. LL> = L
Let S0 = L ;
for i = 1 to i = n− 1 do

l i = 1√
S i−1(i,i)

S i−1(:, i);

S i = S i−1 − l il
>
i .

ln = 0n×1;

return L =
[
l1 · · · ln

]
;

We want to introduce some notation that will help us describe and analyze a faster version of Gaus-
sian elimination – one that uses sampling to create a sparse approximation of the decomposition.

Consider a Laplacian S of a graph H and a vertex v of H. We define Star(v,S) to be the Laplacian
of the subgraph of H consisting of edges incident on v. We define

Clique(v,S) = Star(v,S)− 1

S(v, v)
S(:, v)S(:, v)>

For example, suppose

L =

(
W −aaa>

−aaa diag(aaa) + L−1

)
Then

Star(1,L) =

(
W −aaa>

−aaa diag(aaa)

)
and Clique(1,L) =

(
0 0
0 diag(aaa)− 1

W aaaaaa>

)
which is illustrated in Figure 1.
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Figure 1: Gaussian Elimination: Clique(1,L) = Star(1,L)− 1
L(1,1)L(:, 1)L(:, 1)>.

In Lecture 7, we proved that Clique(v,S) is a graph Laplacian – it follows from the proof of Claim
1.1 in that lecture. Thus we have that following.

Claim 3.1. If S is the Laplacian of a connected graph, then Clique(v,S) is a graph Laplacian.

Note that in Algorithm 1, we have l il
>
i = Star(vi,S i−1)−Clique(vi,S i−1). The update rule can

be rewritten as
S i = S i−1 − Star(vi,S i−1) + Clique(vi,S i−1) ,

This also provides way to understand why Gaussian Elimination is slow in some cases. At each step,
one vertex is eliminated, but a clique is added to the subgraph on the remaining vertices, making
the graph denser. And at the ith step, computing Star(vi,S i−1) takes around deg(vi) time,
but computing Clique(vi,S i−1) requires around deg(vi)

2 time. In order to speed up Gaussian
Elimination, the algorithmic idea of [KS16] is to plug in a sparser appproximate of the intended
clique instead of the entire one.

The following procedure CliqueSample(v,S) produces a sparse approximation of clique(v,S).
Let V be the vertex set of the graph associated with S and E the edge set. We define bi,j ∈ RV to
be the vector with

bi,j(i) = 1 and bi,j(j) = −1 and bi,j(k) = 0 for k 6= i, j.

Given weights w ∈ RE and a vertex v ∈ V , we let

wv =
∑

(u,v)∈E

w(u, v).
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Algorithm 2: CliqueSample(v,S)

Input: Graph Laplacian S ∈ RV×V , of a graph with edge weights w , and vertex v ∈ V
Output: Y v ∈ RV×V sparse approximation of clique(v,S)
Y v ← 0n×n;
foreach Multiedge e = (v, i) from v to a neighbor i do

Randomly pick a neighbor j of v with probability w(j,v)
wv

;

If i 6= j, let Y v ← Y v + w(i,v)w(j,v)
w(i,v)+w(j,v)bi,jb

>
i,j ;

return Y v;

Remark 3.2. We can implement each sampling of a neighbor j in O(1) time using a classical
algorithm known as Walker’s method (also known as the Alias method or Vose’s method). This
algorithm requires an additional O(degS (v)) time to initialize a data structure used for sampling.
Overall, this means the total time for O(degS (v)) samples is still O(degS (v)).

Lemma 3.3. E [Y v] = Clique(v,S).

Proof. Let C = Clique(v,S). Observe that both E [Y v] and C are Laplacians. Thus it suffices
to verify EY v(i, j) = C (i, j) for i 6= j.

C (i, j) = −w(i, v)w(j, v)

wv
,

EY v(i, j) = − w(i, v)w(j, v)

w(i, v) + w(j, v)

(
w(j, v)

wv
+

w(i, v)

wv

)
= −w(i, v)w(j, v)

wv
= −C (i, j).

Remark 3.4. Lemma 3.3 shows that CliqueSample(v,L) produces the original Clique(v,L) in
expectation.

Now, we define Approximate Gaussian Elimination.

Algorithm 3: Approximate Gaussian Elimination / Cholesky Decomposition

Input: Graph Laplacian L
Output: Lower triangulara L as given in Theorem 2.4
Let S0 = L;
Generate a random permutation π on [n];
for i = 1 to i = n− 1 do

l i = 1√
S i−1(π(i),π(i))

S i−1(:, π(i));

S i = S i−1 − Star(π(i),S i−1) + CliqueSample(π(i),S i−1)

ln = 0n×1;

return L =
[
l1 · · · ln

]
and π;

aL is not actually lower triangular. However, if we let Pπ be the permutation matrix corresponding to π, then
PπL is lower triangular. Knowing the ordering that achieves this is enough to let us implement forward and backward
substitution for solving linear equations in L and L>.

Note that if we replace CliqueSample(π(i),S i−1) by Clique(π(i),S i−1) at each step, then we
can recover Gaussian Elimination, but with a random elimination order.
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4 Analyzing Approximate Gaussian Elimination

In this Section, we’re going to analyze Approximate Gaussian Elimination, and see why it works.

Ultimately, the main challenge in proving Theorem 2.4 will be to prove for the output L of Algo-
rithm 3 that with high probability

0.5L � LL> � 1.5L. (1)

We can reduce this to proving that with high probability∥∥∥L+/2(LL> − L)L+/2
∥∥∥ ≤ 0.5 (2)

Ultimately, the proof is going to have a lot in common with our proof of Matrix Bernstein in
Lecture 8. Overall, the lesson there was that when we have a sum of independent, zero-mean
random matrices, we can show that the sum is likely to have small spectral norm if the spectral
norm of each random matrix is small, and the matrix-valued variance is also small.

Thus, to replicate the proof, we need control over

1. The sample norms.

2. The sample variance.

But, there is seemlingly another major obstacle: We are trying to analyze a process where the
samples are far from independent. Each time we sample edges, we add new edges to the remaining
graph, which we will the later sample again. This creates a lot of dependencies between the samples,
which we have to handle.

However, it turns out that independence is more than what is needed to prove concentration.
Instead, it suffices to have a sequence of random variables such that each is mean-zero in expectation,
conditional on the previous ones. This is called a martingale difference sequence. We’ll now learn
about those.

4.1 Normalization, a.k.a. Isotropic Position

Since our analysis requires frequently measuring matrices after right and left-multiplication by
L+/2, we reintroduce the “normalizing map” Φ : Rn×n → Rn×n defined by

Φ(A) = L+/2AL+/2.

We previously saw this in Lectures 7 and 8.

4.2 Martingales

A scalar martingale is a sequence of random variables Z0, . . . , Zk, such that

E [Zi | Z0, . . . , Zi−1] = Zi−1. (3)
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That is, conditional on the outcome of all the previous random variables, the expectation of Zi
equals Zi−1. If we unravel the sequence of conditional expectations, we get that without conditioning
E [Zk] = E [Z0].

Typically, we use martingales to show a statement along like “Zk is concentrated around E [Zk]”.

We can also think of a martingale in terms of the sequence of changes in the Zi variables. Let
Xi = Zi − Zi−1. The sequence of Xis is called a martingale difference sequence. We can now state
the martingale condition as

E [Xi | Z0, . . . , Zi−1] = 0.

And because Z0 and X1, . . . , Xi−1 completely determine Z1, . . . , Zi−1, we could also write the
martingale condition equivalently as

E [Xi | Z0, X1, . . . , Xi−1] = 0.

Crucially, we can write

Zk = Z0 +

k∑
i=1

Zi − Zi−1 = Z0 +

k∑
i=1

Xi

and when we are trying to prove concentration, the martingale difference property of the Xi’s
is often “as good as” independence, meaning that

∑k
i=1Xi concentrates similarly to a sum of

independent random variables.

Matrix-valued martingales. We can also define matrix-valued martingales. In this case, we
replace the martingalue condition of Equation (3), with the condition that the whole matrix stays
the same in expectation. For example, we could have a sequence of random matrices Z 0, . . . ,Z k ∈
Rn×n, such that

E [Z i | Z 0, . . . ,Z i−1] = Z i−1. (4)

Lemma 4.1. Let Li = S i +
∑i

j=1 l jl
>
j for i = 1, ..., n and L0 = S0 = L. Then

E [Li|all random variables before CliqueSample(π(i),S i−1)] = Li−1.

Proof. Let’s only consider i = 1 here as other cases are similar.

L0 = L = l1l
>
1 + Clique(v,L) + L−1

L1 = l1l
>
1 + CliqueSample(v,L) + L−1

E [L1|π(1)] = l1l
>
1 + E [CliqueSample(v,L) |π(1)] + L−1

= l1l
>
1 + Clique(v,L) + L−1

= L0

where we used Lemma 3.3 to get E [CliqueSample(v,L) |π(1)] = Clique(v,L).

Remark 4.2.
∑i

j=1 l jl
>
j can be treated as what has already been eliminated by (Approximate)

Gaussian Elimination, while S i is what still left or going to be eliminated. In Approximate Gaussian
Elimination, Ln =

∑n
i=1 l il

>
i and our goal is to show that Ln ≈K L. Note that Li is always

equal to the original Laplacian L for all i in Gaussian Elimination. Lemma 4.1 demonstrates that
L0,L1, ...,Ln forms a matrix martingale.
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Ultimately, our plan is to use this matrix martingale structure to show that “Ln is concentrated
around L” in some appropriate sense. More precisely, the spectral approximation we would like to
show can be established by showing that “Φ(Ln) is concentrated around Φ(L)”

4.3 Martingale Difference Sequence as Edge-Samples

We start by taking a slightly different view of the observations we used to prove Lemma 4.1. Recall
that Li = S i +

∑i
j=1 l jl

>
j , and Li−1 = S i−1 +

∑i−1
j=1 l jl

>
j and

S i = S i−1 − Star(π(i),S i−1) + CliqueSample(π(i),S i−1) .

Putting these together, we get

Li − Li−1 = l il
>
i + CliqueSample(π(i),S i−1)− Star(π(i),S i−1)

= CliqueSample(π(i),S i−1)−Clique(π(i),S i−1) (5)

= CliqueSample(π(i),S i−1)− E [CliqueSample(π(i),S i−1) | preceding samples]
by Lemma 3.3.

In particular, recall that by Lemma 3.3, conditional on the randomness before the call to
CliqueSample(π(i),S i−1), we have

E [CliqueSample(π(i),S i−1) | preceding samples] = Clique(π(i),S i−1)

Adopting the notation of Lemma 3.3 we write

Y π(i) = CliqueSample(π(i),S i−1)

and we further introduce notation each multi-edge sample for e ∈ Star(π(i),S i−1), as Y π(i),e,
denoting the random edge Laplacian sampled when the algorithm is processing multi-edge e. Thus,
conditional on preceding samples, we have

Y π(i) =
∑

e∈Star(π(i),S i−1)

Y π(i),e (6)

Note that even the number of multi-edges in Star(π(i),S i−1) depends on the preceding samples.
We also want to associate zero-mean variables with each edge. Conditional on preceding samples,
we also define

X i,e = Φ
(
Y π(i),e − E

[
Y π(i),e

])
and X i =

∑
e∈Star(π(i),S i−1)

X i,e

and combining this with Equations (5) and (6)

X i = Φ(Y π(i) − E
[
Y π(i)

]
) = Φ(Li − Li−1)

Altogether, we can write

Φ (Ln − L) =

n∑
i=1

Φ(Li − Li−1) =

n∑
i=1

X i =

n∑
i=1

∑
e∈Star(π(i),S i−1)

X i,e

Note that the X i,e variables form a martingale difference sequence, because the linearity of Φ
ensures they are zero-mean conditional on preceding randomness.
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4.4 Stopped Martingales

Unfortunately, directly analyzing the concentration properties of the Li martingale that we just
introduced turns out to be difficult. The reason is that we’re trying to prove some very delicate
multiplicative error guarantees. And, if we analyze Li, we find that the multiplicative error is not
easy to control, after it’s already gotten big. But that’s not really what we care about anyway:
We want to say it never gets big in the first place, with high probability. So we need to introduce
another martingale, that lets us ignore the bad case when the error has already gotten too big.
At the same time, we also need to make sure that statements about our new martingale can help
us prove guarantees about Li. Fortunately, we can achieve both at once. The technique we use is
related to the much broader topic of martingale stopping times, which we only scratch the surface
of here. We’re also going to be quite informal about it, in the interest of brevity. Lecture notes by
Tropp [Tro19] give a more formal introduction for those who are interested.

We define the stopped martingale sequence L̃i by

L̃i =

{
Li if for all j < i we have Li � 1.5L

Lj∗ for j∗ being the least j such that Lj 6� 1.5L
(7)

Figure 2 shows the L̃i martingale getting stuck at the first time Lj∗ 6� 1.5L.

Figure 2: Gaussian Elimination : Clique(1,L) = Star(1,L)− 1
L(1,1)L(:, 1)L(:, 1)>.

We state the following without proof:

Claim 4.3.

1. The sequence
{
L̃i

}
for i = 0, . . . , n is a martingale.

2.
∥∥∥L+/2(L̃i − L)L+/2

∥∥∥ ≤ 0.5 implies
∥∥∥L+/2(Li − L)L+/2

∥∥∥ ≤ 0.5

The martingale property also implies that the unconditional expectation satisfies E
[
L̃n

]
= L. The

proof of the claim is easy to sketch: For Part 1, each difference is zero-mean if the condition has
not been violated, and is identically zero (and hence zero-mean) if it has been violated. For Part 2,
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if the martingale
{
L̃i

}
has stopped, then

∥∥∥L+/2(L̃i − L)L+/2
∥∥∥ ≤ 0.5 is false, and the implication

is vacuosly true. If the, on the other hand, if the martingale has not stopped, the quantities are
equal, because L̃i = Li, and again it’s easy to see the implication holds.

Thus, ultimately, our strategy is goin to be to show that
∥∥∥L+/2(L̃i − L)L+/2

∥∥∥ ≤ 0.5 with high

probability. Expressed using the normalizing map Φ(·), our goal is to show that with high proba-
bility ∥∥∥Φ(L̃n − L)

∥∥∥ ≤ 0.5.

Stopped martingale difference sequence. In order to prove the spectral norm bound, we

want to express the
{
L̃i

}
martingale in terms of a sequence of martingale differences. To this end,

we define X̃ i = Φ(L̃i − L̃i−1). This ensures that

X̃ i =

{
X i if for all j < i we have Li � 1.5L

0 otherwise
(8)

Whenever the modified martingale X̃ i has not yet stopped, we also introduce individual modified
edge samples X̃ i,e = X i,e. If the martingale has stopped, i.e. X̃ i = 0, then we can take these edge
samples X̃ i,e to be zero. We can now write

Φ
(
L̃n − L

)
=

n∑
i=1

Φ(L̃i − L̃i−1) =
n∑
i=1

X̃ i =
n∑
i=1

∑
e∈Star(π(i),S i−1)

X̃ i,e.

Thus, we can see that Equation (2) is implied by∥∥∥∥∥
n∑
i=1

X̃ i

∥∥∥∥∥ ≤ 0.5. (9)

4.5 Sample Norm Control

In this Subsection, we’re going to see that the norms of each multi-edge sample is controlled
throughout the algorithm.

Lemma 4.4. Given two Laplacians L and S on the same vertex set.1 If each multiedge e of
Star(v,S) has bounded norm in the following sense,∥∥∥L+/2wS (e)beb

>
e L

+/2
∥∥∥ ≤ R,

then each possible sampled multiedge e′ of CliqueSample(v,S) also satisfies∥∥∥L+/2wnew(e′)be′b
>
e′L

+/2
∥∥∥ ≤ R.

1L can be regarded as the original Laplacian we care about, while S can be regarded as some intermediate
Laplacian appearing during Approximate Gaussian Elimination.
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Proof. Let w = wS for simplicity. Consider a sampled edge between i and j with weight
wnew(i, j) = w(i, v)w(j, v)/(w(i, v) + w(j, v)).∥∥∥L+/2wnew(i, j)bijb

>
ijL

+/2
∥∥∥ = wnew(i, j)

∥∥∥L+/2bijb
>
ijL

+/2
∥∥∥

= wnew(i, j)
∥∥∥L+/2bij

∥∥∥2
≤ wnew(i, j)

(∥∥∥L+/2biv

∥∥∥2 +
∥∥∥L+/2bjv

∥∥∥2)
=

w(j, v)

w(i, v) + w(j, v)

∥∥∥L+/2w(i, v)bivb
>
ivL

+/2
∥∥∥+

w(i, v)

w(i, v) + w(j, v)

∥∥∥L+/2w(j, v)bjvb
>
jvL

+/2
∥∥∥

≤ w(j, v)

w(i, v) + w(j, v)
R+

w(i, v)

w(i, v) + w(j, v)
R

= R

The first inequality uses the triangle inequality of effective resistance in L, in that effective resistance
is a distance as proved in lecture 6. The second inequality just uses the conditions of this lemma.

Remark 4.5. Lemma 4.4 only requires that each single multiedge has small norm instead of that
the sum of all edges between a pair of vertices have small norm. And this lemma tells us, after
sampling, each multiedge in the new graph still satisfies the bounded norm condition.

From the Lemma, we can conclude that each edge sample Y π(i),e satisfies
∥∥Φ(Y π(i),e)

∥∥ ≤ R
provided the assumptions of the Lemma hold. Let’s record this observation as a Lemma.

Lemma 4.6. If for all e ∈ Star(v,S i),∥∥∥Φ(wS i(e)beb
>
e )
∥∥∥ ≤ R.

then all e ∈ Star(π(i),S i), ∥∥Φ(Y π(i),e)
∥∥ ≤ R.

Preprocessing by multi-edge splitting. In the original graph of Laplacian L of graph G =
(V,E,w), we have for each edge ê that

w(ê)b êb
>
ê �

∑
e

w(e)beb
>
e = L

This also implies that ∥∥∥L+/2w(ê)b êb
>
ê L

+/2
∥∥∥ ≤ 1.

Now, that means that if we split every original edge e of the graph into K multi-edges e1, . . . eK ,
with a fraction 1/K of the weight, we get a new graph G′ = (V,E′,w ′) such that

Claim 4.7.

1. G′ and G have the same graph Laplacian.
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2. |E′| = K |E|

3. For every multi-edge in G′ ∥∥∥L+/2w ′(e)beb
>
e L

+/2
∥∥∥ ≤ 1/K.

Before we run Approximate Gaussian Elimination, we are going to do this multi-edge splitting to
ensure we have control over multi-edge sample norms. Combined with Lemma 4.4 immediately
establishes the next lemma, because we start off with all multi-edges having bounded norm and
only produce multi-edges with bounded norm.

Lemma 4.8. When Algorithm 3 is run on the (multi-edge) Laplacian of G′, arising from splitting
edges of G into K multi-edges, the every edge sample Y π(i),e satisfies∥∥Φ(Y π(i),e)

∥∥ ≤ 1/K.

As we will see later K = 200 log2 n suffices.

4.6 Random Matrix Concentration from Trace Exponentials

Let us recall how matrix-valued variances come into the picture when proving concentration fol-
lowing the strategy from Matrix Bernstein in Lecture 8.

For some matrix-valued random variable X ∈ Sn, we’d like to show Pr[‖X ‖ ≤ 0.5]. Using Markov’s
inequality, and some observations about matrix exponentials and traces, we saw that for all θ > 0,

Pr[‖X ‖ ≥ 0.5] ≤ exp(−0.5θ) (E [Tr (exp (θX ))] + E [Tr (exp (−θX ))]) . (10)

We then want to bound E [Tr (exp (θX ))] using Lieb’s theorem. We can handle E [Tr (exp (−θX ))]
similarly.

Theorem 4.9 (Lieb). Let f : Sn++ → R be a matrix function given by

f(A) = Tr (exp (H + log(A)))

for some H ∈ Sn. Then −f is convex (i.e. f is concave).

As observed by Tropp, this is useful for proving matrix concentration statements. Combined with
Jensen’s inequality, it gives that for a random matrix X ∈ Sn and a fixed H ∈ Sn

E [Tr (exp (H + X ))] ≤ Tr (exp (H + log(E [exp(X )]))) .

The next crucial step was to show that it suffices to obtain an upper bound on the matrix E [exp(X )]
w.r.t the Loewner order. Using the following three lemmas, this conclusion is an immediate corol-
lary.

Lemma 4.10. If A � B , then Tr (exp(A)) ≤ Tr (exp(B)).

Lemma 4.11. If 0 ≺ A � B , then log(A) � log(B).

Lemma 4.12. log(I + A) � A for A � −I .

Corollary 4.13. For a random matrix X ∈ Sn and a fixed H ∈ Sn, if E [exp(X )] � I +U where
U � −I , then

E [Tr (exp (H + X ))] ≤ Tr (exp (H + U )) .
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4.7 Mean-Exponential Bounds from Variance Bounds

To use Corollary 4.13, we need to construct useful upper bounds on E [exp(X )]. This can be done,
starting from the following lemma.

Lemma 4.14. exp(A) � I + A + A2 for ‖A‖ ≤ 1.

If X is zero-mean and ‖X ‖ ≤ 1, this means that E [exp(X )] � I +E
[
X 2
]
, which is how we end up

wanting to bound the matrix-valued variance E
[
X 2
]
. In the rest of this Subsection, we’re going

to see the matrix-valued variance of the stopped martingale is bounded throughout the algorithm.

Firstly, we note that for a single edge sample X̃ i,e, by Lemma 4.8, we have that∥∥∥X̃ i,e

∥∥∥ ≤ ∥∥Φ
(
Y π(i),e − E

[
Y π(i),e

])∥∥ ≤ 1/K,

using that ‖A−B‖ ≤ max(‖A‖ , ‖B‖), for A,B � 0, and ‖E [A]‖ ≤ E [‖A‖] by Jensen’s inequal-
ity.

Thus, if 0 < θ ≤ K, we have that

E
[
exp(θX̃ i,e) | preceding samples

]
� I + E

[
(θX̃ i,e)

2 | preceding samples
]

(11)

� I +
1

K
θ2 · E

[
Φ(Y π(i),e) | preceding samples

]
4.8 The Overall Mean-Trace-Exponential Bound

We will use E(<i) to denote expectation over variables preceding the ith elimination step. We
are going to refrain from explicitly writing out conditioning in our expectations, but any inner
expectation that appears inside another outer expectation should be taken as conditional on the
outer expectation. We are going to use di to denote the multi-edge degree of vertex π(i) in S i−1.
This is exactly the number of edge samples in the ith elimination. Note that there is no elimination
at step n (the algorithm is already finished). As a notational convenience, let’s write n̂ = n − 1.
With all that in mind, we bound the mean-trace-exponential for some parameter 0 < θ ≤ 0.5/

√
K

ETr

(
exp(θ

n̂∑
i=1

X̃ i)

)
(12)

= E
(<n̂)

E
π(n̂)

E
X̃ n̂,1

· · · E
X̃ n̂,dn̂−1

E
X̃ n̂,dn̂

Tr exp


n̂−1∑
i=1

θX̃ i +

dn̂−1∑
e=1

θX̃ n̂,e︸ ︷︷ ︸
H

+θX̃ n̂,dn̂


X̃ n̂,1 . . . , X̃ n̂,dn̂ are independent conditional on (< n̂), π(n̂)

≤ E
(<n̂)

E
π(n̂)

E
X̃ n̂,1

· · · E
X̃ n̂,dn̂−1

Tr exp

(
n̂−1∑
i=1

θX̃ i +

dn̂−1∑
e=1

θX̃ n̂,e +
1

K
θ2 · E

X̃ n̂,dn̂

Φ(Y π(n̂),dn̂)

)
By Equation (11) and Corollary 4.13 .

... Repeat for each multi-edge sample X̃ n̂,1 . . . , X̃ n̂,dn̂−1
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≤ E
(<n̂)

E
π(n̂)

Tr exp

(
n̂−1∑
i=1

θX̃ i +

dn̂∑
e=1

1

K
θ2 · E

X̃ n̂,e

Φ(Y π(n̂),e)

)

= E
(<n̂)

E
π(n̂)

Tr exp

(
n̂−1∑
i=1

θX̃ i +
1

K
θ2Clique(π(n̂),S n̂−1)

)

To further bound the this quantity, we now need to deal with the random choice of π(n̂). We’ll
be able to use this to bound the trace-exponential in a very strong way. From a random matrix
perspective, it’s the following few steps that give the analysis it’s surprising strength.

We can treat 1
K θ

2Clique(π(n̂),S n̂−1) as a random matrix. It is not zero-mean, but we can still
bound the trace-exponential using Corollary 4.13.

We can also bound the expected matrix exponential in that case, using a simple corollary of
Lemma 4.14.

Corollary 4.15. exp(A) � I + (1 +R)A for 0 � A with ‖A‖ ≤ R.

Proof. The conclusion follows after observing that for 0 � A with ‖A‖ ≤ R, we have A2 � RA.
We can see this by considering the spectral decomposition of A and dealing with each eigenvalue
separately.

Next, we need a simple structural observation about the cliques created by elimination:

Claim 4.16.
Clique(π(i),S i) � Star(π(i),S i) � S i

Proof. The first inequality is immediate from Clique(π(i),S i) � Clique(π(i),S i) + l il
>
i =

Star(π(i),S i) . The latter inequality Star(π(i),S i) � S i follows from the star being a subgraph
of the whole Laplacian S i.

Next we make use of the fact that X̃ i is from the difference sequence of the stopped martingale.
This means we can assume

S i � 1.5L,

since otherwise X̃ i = 0 and we get an even better bound on the trace-exponential. To make this
formal, in Equation (12), we ought to do a case analysis that also includes the case X̃ i = 0 when
the martingale has stopped, but we omit this.

Thus we can conclude by Claim 4.16 that

‖Φ(Clique(π(i),S i))‖ ≤ 1.5.

By our assumption 0 < θ ≤ 0.5/
√
K, we have

∥∥ 1
K θ

2Φ(Clique(π(i),S i−1))
∥∥ ≤ 1, so that by

Corollary 4.15,

E
π(i)

exp

(
1

K
θ2Φ(Clique(π(i),S i−1))

)
� I +

2

K
θ2 E

π(i)
Φ(Clique(π(i),S i−1)) (13)

� I +
2

K
θ2 E

π(i)
Φ(Star(π(i),S i−1)) by Claim 4.16.
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Next we observe that, because every multi-edge appears in exactly two stars, and π(i) is chosen
uniformly at random among the n+ 1− i vertices that S i−1 is supported on, we have

E
π(i)

Star(π(i),S i−1) = 2
1

n+ 1− i
S i−1.

And, since we assume S i � 1.5L, we further get

E
π(i)

exp

(
1

K
θ2Φ(Clique(π(i),S i−1))

)
� I +

6θ2

K(n+ 1− i)
I .

We can combine this with Equation (12) and Corollary 4.13 to get

ETr

(
exp(θ

n̂∑
i=1

X̃ i)

)

≤ E
(<n̂)

E
π(n̂)

Tr exp

(
n̂−1∑
i=1

θX̃ i +
1

K
θ2Clique(π(n̂),S n̂−1)

)

≤ E
(<n̂)

Tr exp

(
n̂−1∑
i=1

θX̃ i +
6θ2

K(n+ 1− i)
I

)

And by repeating this analysis for each term X̃ i, we get

ETr

(
exp(θ

n̂∑
i=1

X̃ i)

)
≤ Tr exp

(
n̂∑
i=1

6θ2

K(n+ 1− i)
I

)

≤ Tr exp

(
7θ2 log(n)

K
I

)
= n exp

(
7θ2 log(n)

K

)
Then, by choosing K = 200 log2 n and θ = 0.5

√
K, we get

exp(−0.5θ)ETr

(
exp(θ

n̂∑
i=1

X̃ i)

)
≤ exp(−0.5θ)n exp

(
7θ2 log(n)

K

)
≤ 1/n5.

E Tr
(

exp(−θ
∑n̂

i=1 X̃ i)
)

can be bounded by an identical argument, so that Equation (10) gives

Pr

[∥∥∥∥∥
n̂∑
i=1

X̃ i

∥∥∥∥∥ ≥ 0.5

]
≤ 2/n5.

Thus we have established
∥∥∥∑n̂

i=1 X̃ i

∥∥∥ ≤ 0.5 with high probability (Equation (9)), and this in turn

implies Equation (2), and finally Equation (1):

0.5L � LL> � 1.5L.

Now, all that’s left to note is that the running time is linear in the multi-edge degree of the vertex
being eliminated in each iteration (and this also bounds the number of non-zero entries being
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created in L). The total number of multi-edges left in the remaining graph stays constant at
Km = O(m log2 n). Thus the expected degree in the ith elimination is Km/(n + i − 1), because
the remaining number of vertices is n + i − 1. Hence the total running time and total number of
non-zero entries created can both be bounded as

Km
∑
i

1/(n+ i− 1) = O(m log3 n).

We can further prove that the bound O(m log3 n) on running time and number of non-zeros in L
holds with high probability (e.g. 1 − 1/n5). To show this, we essentially need a scalar Chernoff
bound, in except the degrees are in fact not independent, and so we need a scalar martingale
concentration result, e.g. Azuma’s Inequality. This way, we complete the proof of Theorem 2.4.
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