
Advanced Graph Algorithms and Optimization Spring 2023

Course Introduction & Convex Optimization

R. Kyng & M. Probst Problem Set 1 — Monday, February 20th

These exercises will not count toward your grade, but you are encouraged to solve them all. This
exercise sheet contains exercises relating to lectures in Week 1.

To get feedback, you must hand in your solutions by 23.59 pm on March 2nd. Both hand-written
and LATEX solutions are acceptable, but we will only attempt to read legible text.

Exercise 1

Let us define the α-sub-level set of a function f : Rn → R to be the set Sα
def
= {x : f(x ) ≤ α}.

(i) Prove that if a function f is convex, then all its sub-level sets are convex sets.

(ii) Is it true that a function whose sub-levels sets are all convex is necessarily convex?

Solution.

(i) If Sα is empty, then the statement is trivial. Let x , z ∈ Sα for some α and assume that
θ ∈ [0, 1]. We have f(x ) ≤ α and f(z ) ≤ α by definition. Furthermore, since f is convex, we
have f(θx + (1− θ)z ) ≤ θf(x ) + (1− θ)f(z ). Combining the above equations yields

f(θx + (1− θ)z ) ≤ θα+ (1− θ)α = α.

This implies that θx + (1− θ)z is in Sα.

(ii) This is not true. As a counterexample, consider the function f(x) = x3. It is easy to check
that all sub-level sets of f are convex. However, function f is not convex. A function whose
all sub-level sets are convex is called quasiconvex.

Exercise 2

Recall the definition of Laplacian L = BR−1B>.

(i) We can also define Laplacian as L
def
= D − A, where A is the weighted adjacency matrix,

i.e. A(u, v) = 1/r(u, v), and D
def
= diagv∈V w(v) for w(v) :=

∑
(u,v)∈E 1/r(u, v). Prove that

these two definitions are equivalent.

(ii) Given a function on the vertices, x ∈ RV , the Laplacian quadratic form is

x>Lx =
∑

(u,v)∈E

(x (u)− x (v))2

r(u, v)
.

Prove the above equality and building on that, show that L is positive semi-definite.
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(iii) What is the kernel of L, which is denoted by Ker(L)?

Solution.

(i) For any v ∈ V , we have

(BR−1B>)(v, v) =
∑
e∈E

B(v, e)(R−1B>)(e, v).

Since R−1 = diage∈E 1/r(e), then (R−1B>)(e, v) = B(v, e)/r(e). Therefore, we have

(BR−1B>)(v, v) =
∑
e∈E

B(v, e)
1

r(e)
B(v, e) =

∑
(u,v)∈E

1

r(u, v)
= w(v).

Thus, the diagonal of BR−1B> and D −A are equivalent. For v 6= u ∈ V , we have

(BR−1B>)(v, u) =
∑
e∈E

B(v, e)(R−1B>)(e, u) =
∑
e∈E

B(v, e)
1

r(e)
B(u, e).

We observe that this is equal to 0 if there is no edge between v and u and −1/r(v, u) if
(v, u) ∈ E. Therefore, we get (BR−1B>)(v, u) = (D −A)(v, u).

(ii) We have
x>Lx = x>(D −A)x = x>Dx − x>Ax .

We recall that D is a diagonal matrix; thus, we have

x>Dx =
∑
v∈V

D(v, v)x (v)2 =
∑
v∈V

w(v)x (v)2.

Furthermore,

x>Ax =
∑
v∈V

x (v)(Ax )(v)

=
∑
v∈V

x (v)
∑
u∈V

A(v, u)x (u)

=
∑
v∈V

∑
u∈V

A(v, u)x (v)x (u)

=
∑

(u,v)∈E

2x (v)x (u)

r(u, v)
.

Combining the above equalities yields

x>Lx =
∑
v∈V

w(v)x (v)2 −
∑

(u,v)∈E

2x (v)x (u)

r(u, v)

=
∑

(u,v)∈E

x (u)2 + x (v)2

r(u, v)
−

∑
(u,v)∈E

2x (v)x (u)

r(u, v)

=
∑

(u,v)∈E

(x (u)− x (v))2

r(u, v)
.

Finally, since the right-hand side of the above equation is non-negative, L is positive semidef-
inite.
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(iii) Assume that the underlying graph is connected. We explain at the end how a similar argument
applies to the disconnected case. Suppose that x ∈ RV is in the kernel of L, that is, Lx = 0.
Let u = arg minv∈V x (v). Then, we have

(Lx )(u) =
∑
v∈V

L(u, v)x (v).

Recall that L = D −A. Thus, we get

(Lx )(u) =
∑

(u,v)∈E

1

r(u, v)
x (u)−

∑
(u,v)∈E

1

r(u, v)
x (v).

Let U be the set of vertices which are adjacent to u. Note that U 6= ∅ since the graph is
connected. This implies that

∑
(u,v)∈E

1
r(u,v) > 0. Since u = arg minv∈V x (v) and (Lx )(u) =

0, we can conclude that x (u) = x (v) for any v ∈ U . By applying the same argument
recursively, we have

Ker(L) = {x : x = α1 for α ∈ R}.

Assume that the underlying graph is not connected and has k > 1 connected components
C1, · · · , Ck. Using the same argument for each of the components, we can conclude that
vectors u1, · · · ,uk form the basis of Ker(L), where u i(v) = 1 if v ∈ Ci and 0 otherwise for
i ∈ [k].

Exercise 3

(i) Prove that for a matrix A we have im(A) = ker(A>)⊥, where im(A) denotes the image of A
and ker(A>)⊥ is the orthogonal complement to ker(A>).

(ii) Building on part (i), prove that in a connected graph with resistances r ∈ RE>0, an electrical
flow f routing demand d exists if and only if 1>d = 0.

Solution.

(i) Let aaai ∈ Rm for i ∈ [n] denote the i-th column in A. Since (A⊥)⊥ = A, we only need to
prove that im(A)⊥ = ker(A>).

Firstly, for x ∈ ker(A>), we have A>x = 0. This implies that aaa>i x = 0 for i ∈ [n]. Since
im(A) = span{aaa1, · · · ,aaan}, we will have x>z = 0 for any z ∈ im(A). This implies that
x ∈ im(A)⊥. Therefore, we have ker(A>) ⊆ im(A)⊥.

Secondly, for any x ∈ im(A)⊥, we have x>aaai = 0 for any i ∈ [n]. This implies that A>x = 0.
Thus, im(A)⊥ ⊆ ker(A>).

(ii) By definition, there exists x ∈ Rn such that Lx = d if and only if d ∈ im(L). From part (i),
we know that im(L) = ker(L>)⊥. Furthermore, we have L = L>. Hence, an electrical flow f
routing d exists if and only if d ∈ ker(L)⊥. This is the same as z>d = 0 for any z ∈ ker(L).
By applying Exercise 2, part (iii), this holds if and only if 1>d = 0.
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Exercise 4

We define1 the gradient of a multivariate function f : Rn → R as the function ∇f : Rn → Rn with
∇f(x )(i) = d

dx (i)f(x ), i.e. we consider f at a point x , treat the ith coordinate as a variable x (i),
take a derivative w.r.t. it and then evaluate it at the point x .

Now, prove that the system of linear equations Lx = d is the same as the system obtained by
setting the gradient of the function c(x ) = 1

2x
>Lx − x>d equal to zero.

Solution.

The gradient of a function f : S → R at point x ∈ S is denoted by ∇f(x ) is

∇f(x ) =

[
∂f(x )

∂x (1)
, . . . ,

∂f(x )

∂x (n)

]>
.

We have

∇c(x ) = ∇
(

1

2
x>Lx − x>d

)
= Lx − d .

Therefore, the system obtained by setting the gradient with respect to x of the function c(x ) =
1
2x
>Lx − x>d equal to zero is the same as Lx = d .

Exercise 5

The goal of this exercise is to prove that

max
x∈RV

x>d − 1

2
x>Lx = min

f ∈RE

1

2

∑
e

r(e)f (e)2

s.t. Bf = d .

We’ll break that down into a few steps.

Let f ∈ RE be an arbitrary flow that satisfies Bf = d , i.e. it routes the demand d . Let x ∈ RV be
arbitrary voltages. Arbitrary means you cannot assume these are the electrical flow and voltages.

(i) Prove that

1

2

∑
e

r(e)f (e)2 = x>d −

 ∑
(u,v)∈E

(x (u)− x (v))(f (u, v))− 1

2
r(u, v)f (u, v)2


Hint: use that x>(Bf − d) = 0.

(ii) Prove that

(x (u)− x (v))(f (u, v))− 1

2
r(u, v)f (u, v)2 ≤ 1

2

(x (u)− x (v))2

r(u, v)
.

1We will give a more formal definition of Frechet derivatives later, which is formally what we mean by ‘gradient’.
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(iii) Conclude that 1
2f
>Rf ≥ x>d − 1

2x
>Lx .

(iv) Assume we are given x̃ and f̃ such that

Lx̃ = d and f̃ = R−1B>x̃

Prove that Bf̃ = d and

x̃>d − 1

2
x̃>Lx̃ =

1

2
f̃
>
Rf̃ .

(v) Show

x̃ ∈ arg max
x∈RV

x>d − 1

2
x>Lx

and

f̃ ∈ arg min
f ∈RE

1

2

∑
e

r(e)f (e)2

s.t. Bf = d .

Solution.

(i) Since f ∈ RE satisfies Bf = d , for x ∈ RV , we have that

x>(Bf − d) = 0

⇒ x>d = x>Bf = (B>x )f =
∑

(u,v)∈E

(x (u)− x (v))f (u, v)

⇒ 0 = x>d −
∑

(u,v)∈E

(x (u)− x (v))f (u, v)

⇒ 1

2

∑
e

r(e)f (e)2 = x>d −
∑

(u,v)∈E

(x (u)− x (v))f (u, v) +
1

2

∑
e

r(e)f (e)2

⇒ 1

2

∑
e

r(e)f (e)2 = x>d −

 ∑
(u,v)∈E

(x (u)− x (v))(f (u, v))− 1

2
r(u, v)f (u, v)2

 .

(ii) Denote h : R→ R is a function of f (u, v):

h(f (u, v)) = (x (u)− x (v))(f (u, v))− 1

2
r(u, v)f (u, v)2.

It is noticed that h is quadratic function of f (u, v), thus its maximum is attained when its
derivative h′ is equal to zero:

h′(f ∗(u, v)) = x (u)− x (v)− r(u, v)f ∗(u, v) = 0 ⇒ f ∗(u, v) =
(x (u)− x (v))

r(u, v)
.

Hence

h(f ∗(u, v)) =
(x (u)− x (v))2

r(u, v)
− 1

2

(x (u)− x (v))2

r(u, v)
=

1

2

(x (u)− x (v))2

r(u, v)
.

Therefore, for f being an arbitrary flow s.t. Bf = d and x being an arbitrary voltages, we
have

(x (u)− x (v))(f (u, v))− 1

2
r(u, v)f (u, v)2 ≤ 1

2

(x (u)− x (v))2

r(u, v)
.
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(iii) In Exercise 2, part (ii), we have proved that

x>Lx =
∑

(u,v)∈E

(x (u)− x (v))2

r(u, v)
.

Combining it with the previous two questions in this exercise, we have∑
(u,v)∈E

(x (u)− x (v))(f (u, v))− 1

2
r(u, v)f (u, v)2 ≤ 1

2
x>Lx ,

thus,
1

2

∑
e

r(e)f (e)2 =
1

2
f >Rf ≥ x>d − 1

2
x>Lx .

(iv) To prove Bf̃ = d , we have

Bf̃ = B(R−1B>x̃ ) = (BR−1B>)x̃ = Lx̃ = d .

We also have

x̃>d − 1

2
x̃>Lx̃

=x̃>(Lx̃ )− 1

2
x̃>Lx̃

=
1

2
x̃>Lx̃

=
1

2
x̃>BR−1B>x̃ L = BR−1B>

=
1

2
x̃>BR−1RR−1B>x̃ RR−1 = I

=(R−1B>x̃ )>R(R−1B>x̃ ) R is diagonal

=
1

2
f̃
>
Rf̃

(v) According to optimality condition, maximum is attained when

∇(x̃>d − 1

2
x̃>Lx̃ ) = d − Lx̃ = 0,

thus,

x̃ ∈ arg max
x∈RV

x>d − 1

2
x>Lx ,

where Lx̃ = d .

To prove the optimality of f̃ , we know from part (iii) that for any f s.t. Bf = d and any x ,
we have

1

2
f >Rf ≥ x> − 1

2
x>Lx ,

thus, for any f s.t. Bf = d , we must have

1

2
f >Rf ≥ x̃> − 1

2
x̃>Lx̃ =

1

2
f̃
>
Rf̃ .

6



That is

f̃ ∈ arg min
f ∈RE

1

2

∑
e

r(e)f (e)2

s.t. Bf = d .

Exercise 6

Recall that the following theorem gives us a sufficient (though not necessary) condition for opti-
mality.

Theorem (Extreme Value Theorem). Let f : Rn → R be a continuous function and F ⊆ Rn be
nonempty, bounded, and closed. Then, the optimization problem min f(x ) : x ∈ F has an optimal
solution.

Prove the above theorem. You might use the following two theorems.

Theorem (Bolzano-Weierstrass). Every bounded sequence in Rn has a convergent subsequence.

Theorem (Boundedness Theorem). Let f : Rn → R be a continuous function and F ⊆ Rn be
nonempty, bounded, and closed. Then f is bounded on F .

Solution.

Let α be the infimum of f over F (i.e. the largest value for which any point x ∈ F respects
f(x ) ≥ α); by the Boundedness Theorem, such a value exists, as f is lower-bounded, and the set
of lower bounds has a greatest lower bound, α.

Let
Fk := {x ∈ F : α ≤ f(x ) ≤ α+ 2−k}.

Fk cannot be empty, since if it were, then α + 2−k would be a strictly greater lower bound on f
than α. For each k, let x k be some x ∈ Fk. {x k}∞k=1 is a bounded sequence as Fk ⊆ F , so the
Bolzano-Weierstrass theorem we know that there is a convergent subsequence, {yk}

∞
k=1, with limit

ȳ . Because the set is closed, ȳ ∈ F . By continuity f(ȳ) = limk→∞ f(yk), while by construction,
limk→∞ f(yk) = α.

Thus, the optimal solution is ȳ .

Exercise 7

Prove or sketch a proof of Taylor’s Theorem.

Theorem (Taylor’s Theorem, multivariate first-order remainder form). If f : S → R is continu-
ously differentiable over [x ,y ], then for some z ∈ [x ,y ], we have f(y) = f(x ) + ∇f(z )>(y − x ).
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Solution.

First, we prove the univariate case, which can be represented as

f(y) = f(x) + f ′(z)(y − x).

We construct a new function

g(w) =
f(y)− f(x)

y − x
(w − x) + f(x)− f(w),

which can be proved to be continuously differentiable over [x, y], and g(x) = g(y). Then according
to Rolle’s theorem, ∃z ∈ (x, y) such that

g′(z) =
f(y)− f(x)

y − x
− f ′(z) = 0.

Rearranging the equality and we can get

f(y) = f(x) + f ′(z)(y − x).

Now, we prove multivariate case, which is expresses as

f(y) = f(x ) +∇f(z )T (y − x ).

We play a trick to transform multivariate case to univariable case. Set φ(t) = f(x + t(y − x )). It
is noticed that φ(0) = f(x ), φ(1) = f(y). According to the Chain Rule, we have

φ′(t) = ∇f(x + t(y − x ))T (y − x ).

In particular, φ is differentiable. According to the conclusion made in the univariate case, ∃t̃ ∈ (0, 1)
such that

φ(1) = φ(0) + φ′(t̃)(1− 0),

or equivalently,
f(y) = f(x ) +∇f(z )T (y − x ),

where z = x + t̃(y − x ).

Exercise 8

Let f1(x ), · · · , fk(x ) be a collection of convex functions all with the same domain and define

f(x )
def
= max1≤i≤k fi(x ). Prove that f(x ) is convex.

Solution.

Notice that the domain of f is trivially convex. Consider arbitrary x ,y in the domain of f and let
θ be in [0, 1]. Then by applying the fact that fi(x ) is convex for any i ∈ [k], we get

f(θx + (1− θ)y) = max
1≤i≤k

fi(θx + (1− θ)y)

≤ max
1≤i≤k

θfi(x ) + (1− θ)fi(y)

≤ θ max
1≤i≤k

fi(x ) + (1− θ) max
1≤i≤k

fi(y)

= θf(x ) + (1− θ)f(y).
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This implies that f(x ) is convex.

Exercise 9

Assume that f(x, y) is a convex function and S is a convex non-empty set. Prove that

g(x) = inf
y∈S

f(x, y)

is convex, provided g(x) > −∞ for all x.

Solution.

Note that the domain of g is the set

dom(g) = {x : (x, y) ∈ dom(f) for some y ∈ S}.

Let us first prove that dom(g) is a convex set. Consider x, x′ ∈ dom(g) and an arbitrary θ ∈ [0, 1].
Then, there exist y, y′ ∈ S such that (x, y) and (x′, y′) are in the domain of f . Since dom(f) is
convex, θ(x, y) + (1− θ)(x′, y′) is in dom(f). Furthermore, we have that θy+ (1− θ)y′ ∈ S because
S is a convex set. Therefore, θx+ (1− θ)x′ is in dom(g).

Now, consider x, x′ ∈ dom(g) and θ ∈ [0, 1]. Assume that

y = arg inf
y∈S

f(x, y) and y′ = arg inf
y∈S

f(x′, y).

We have that

g(θx+ (1− θ)x′) = inf
y∈S

f(θx+ (1− θ)x′, y)

≤ f(θx+ (1− θ)x′, θy + (1− θ)y′)
= f(θ(x, y) + (1− θ)(x′, y′))
≤ θf(x, y) + (1− θ)f(x′, y′)

= θg(x) + (1− θ)g(x′).

This finishes the proof.

Exercise 10

For each function below, determine whether it is convex or not.

1. f(x) = |x|6 on x ∈ R

2. f(x) = exp(x) on x ∈ (0,∞)

3. f(x, y) =
√
x+ y on (x, y) ∈ (0, 1)× (0, 1)

4. f(x, y) = xy on (x, y) ∈ (−1, 1)× (−1, 1)
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Solution.

1. We have f(x) = |x|6 = x6 on x ∈ R. It suffices to show that for any x, y ∈ R

f(y) ≥ f(x) + ∇f(x)>(y − x)

which is equivalent to

y6 ≥ x6 + 6x5(y − x)⇔ y6 − 6x5y + 5x6 ≥ 0.

This is trivially true for x = 0. Thus, assume that x 6= 0 and let z = y/x. Then, it suffices to
show that

h(z) = z6 − 6z + 5 ≥ 0.

We observe that ∇h(z) = 6z5 − 6. Thus, h(z) reaches its minimum at z = 1, which is equal
to 0. Therefore h(z) ≥ 0 for any z.

2. We have f(x) = exp(x) on x ∈ (0,∞). It suffices to show that for any x, y ∈ (0,∞)

f(y) ≥ f(x) + ∇f(x)>(y − x)

which is equivalent to

exp(y) ≥ exp(x) + exp(x)(y − x)⇔ exp(y − x) ≥ 1 + (y − x).

This inequality holds because we have

exp(z) ≥ 1 + z.

When proving this, we’ll take for granted that

(a) exp(z) =
∑∞

i=0
zi

i!

(b) exp(z) < 1 for z < 0, exp(z) = 1 for z = 0, and exp(z) > 1 for z > 0.

Let f(z) = exp(z)− (1 + z) =
∑∞

i=2
zi

i! . Note f(0) = 0, and f ′(z) =
∑∞

i=2
zi−1

(i−1)! = exp(z)− 1,

so f ′(z) > 0 for z > 0 and f ′(z) < 0 for z < 0. Thus z = 0 is the minimizer of f , and so for
all z we have f(z) ≥ 0, i.e. exp(z) ≥ 1 + z.

3. Consider the function f(x, y) =
√
x+ y on (x, y) ∈ (0, 1)× (0, 1). We have

∇f(x, y) =

[
1

2
√
x+ y

,
1

2
√
x+ y

]
.

For f(x, y) to be convex it is necessary that for any aaa, b ∈ (0, 1)× (0, 1)

f(b) ≥ f(aaa) + ∇f(aaa)>(b − aaa).

Set aaa = (1/4, 0) and b = (1/2, 0). Then, f(b) = 1/
√

2 and f(aaa) + ∇f(aaa)>(b − aaa) = 3/4.
Since 1/

√
2 < 3/4, we can conclude that f(x, y) is not convex.

4. Consider function f(x, y) = xy on (x, y) ∈ (−1, 1) × (−1, 1). Set aaa = (−1/4, 1/4), b =
(1/2,−1/2), and θ = 1/2. Then, we have

f(θaaa + (1− θ)b) = − 1

64
> −10

64
= − 1

32
− 1

8
= θf(aaa) + (1− θ)f(b).

This implies that f(x, y) is not convex.

Remark. It is often much easier to show convexity by directly showing the Hessian of a twice
differentiable function is positive semi-definite. In following lectures, we will learn about this ap-
proach.
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Bonus Exercise 11: Jensen’s Inequality

This exercise will teach you about Jensen’s inequality, one of the most important inequalities that
we use when studying convex functions.

1. Assume that S ⊆ Rn is a convex set and that the function f : S → R is convex. Suppose
that x 1, · · · ,xn ∈ S and θ1, · · · , θn ≥ 0 with θ1 + · · ·+ θn = 1. Prove that

f(θ1x 1 + · · ·+ θnxn) ≤ θ1f(x 1) + · · ·+ θnf(xn).

Remark. This is typically known as Jensen’s inequality and can be extended to infinite sums.
If D is a probability distribution on S, and X ∼ D, then f(E [X ]) ≤ E [f(X )] whenever both
integrals are finite.

2. Prove that (
∏n
i=1 xi)

1
n ≤ 1

n

∑n
i=1 xi.

3. Prove that 1
1
n

∑n
i=1

1
xi

≤ (
∏n
i=1 xi)

1
n .

Solution.

1. We prove this statement by applying induction on n. As the base case, the statement is true
for n = 2 because f is convex. As the induction hypothesis, assume that for any n ≥ 2

f (θ1x 1 + · · ·+ θnxn) ≤ θ1f (x 1) + · · ·+ θnf (xn) .

for any choice of θ1, · · · , θn ≥ 0 such that θ1 + · · ·+ θn = 1.

Now, we show that this also holds for n + 1. We can assume without loss of generality that
θn+1 ∈ (0, 1). We have

n+1∑
i=1

θif (x i) = (1− θn+1)

n∑
i=1

θi
(1− θn+1)

f (x i) + θn+1f (xn+1) .

Note that
∑n

i=1
θi

(1−θn+1)
is equal to 1. Thus, by applying the induction hypothesis, we get

n+1∑
i=1

θif (x i) ≥ (1− θn+1) f

(
n∑
i=1

θi
(1− θn+1)

x i

)
+ θn+1f (xn+1) .

Observe that
∑n

i=1
θi

(1−θn+1)
x i ∈ S since it is a convex combination of points in S. Again, by

using the convexity of f , we have

n+1∑
i=1

θif (x i) ≥ f

(
(1− θn+1)

n∑
i=1

θi
(1− θn+1)

x i + θn+1xn+1

)
= f

(
n+1∑
i=1

θix i

)
.

2. We observe that (
n∏
i=1

xi

) 1
n

≤ 1

n

n∑
i=1

xi.

11



is equivalent to

log

(
n∏
i=1

xi

) 1
n

≤ log
1

n

n∑
i=1

xi.

This is the same as
n∑
i=1

− 1

n
log xi ≥ − log

(
1

n

n∑
i=1

xi

)
.

which is true by using the previous part and the fact that function f(x) = − log x is convex
for x ∈ (0,∞).

3. By the previous part, we know that(
n∏
i=1

xi

) 1
n

≤ 1

n

n∑
i=1

xi

which, by applying the inquality to values 1/xi instead of xi yields(
n∏
i=1

1

xi

) 1
n

≤ 1

n

n∑
i=1

1

xi
.

Dividing both sides by
(∏n

i=1
1
xi

) 1
n · 1n

∑n
i=1

1
xi

gives

n∑n
i=1

1
xi

≤

(
n∏
i=1

xi

) 1
n

.
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