
Advanced Graph Algorithms and Optimization Spring 2023

Convex Optimization

R. Kyng & M. Probst Problem Set 2 — Wednesday, March 1st

These exercises will not count toward your grade, but you are encouraged to solve them all. This
exercise sheet contains exercises relating to lectures in Week 2.

To get feedback, you must hand in your solutions by 23.59 pm on March 9th. Both hand-written
and LATEX solutions are acceptable, but we will only attempt to read legible text.

Exercise 1

Prove that if a matrix A ∈ Rn×n is symmetric, then ‖A‖ = max(|λmax(A)| , |λmin(A)|) and give
an example of a non-symmetric matrix for which this is not true.

Solution.

By definition, we have

‖A‖ = max
x∈Rn,x 6=0

‖Ax‖
‖x‖

= max
‖x‖=1

‖Ax‖ .

Based on the lecture notes we have that A = VΛV >, where the columns of V form an orthogonal
basis and Λii = λi(A). Thus, we will have

‖A‖2 = max
‖x‖=1

‖Ax‖2

= max
‖x‖=1

x>A>Ax

= max
‖x‖=1

x>(VΛV >VΛV >)x

= max
‖x‖=1

(V >x )>Λ2(V >x ).

Furthermore, since V is orthogonal∥∥∥V >x∥∥∥ = (V >x )>(V >x ) = x>VV >x = x>x = ‖x‖2

which implies that ‖x‖ =
∥∥V >x∥∥.

Overall, we have

‖A‖2 = max
‖z‖=1

z>Λ2z = max
‖z‖=1

n∑
i=1

λ2i z (i)2

This implies ‖A‖2 = max(λ2max, λ
2
min). Thus, we have ‖A‖ = max(λmax, λmin).

On the other hand, consider the matrix

A =

[
0 1
0 0

]
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which is not symmetric. We observe that the eigenvalues of A are zero, but ‖A‖ = 1. Therefore,
we get ‖A‖ 6= max(λmax, λmin).

Exercise 2

Consider a twice continuously differentiable function f : S → R, where S ⊂ Rn is a convex open
set. Prove that f is β-gradient Lipschitz if and only if for all x ∈ S we have ‖Hf (x )‖ ≤ β.

Solution.

Assume that S ⊂ Rn is open and convex. Let us first prove that if f is β-gradient Lipschitz, then
‖λmax(Hf (x ))‖ ≤ β. For an arbitrary x ∈ S and any δ 6= 0 ∈ Rn such that x + δ ∈ S we have

∇f(x + δ) = ∇f(x ) +Hf (x )δ + q(δ)

where limδ→0
‖q(δ)‖
‖δ‖ = 0.

Now, we have
‖∇f(x + δ)−∇f(x )‖2 ≤ β ‖δ‖2

By combing the aforementioned two inequalities, we get

‖Hf (x )δ + q(δ)‖2 ≤ β ‖δ‖2 ⇒
‖Hf (x )δ‖2
‖δ‖2

≤ β +
‖q(δ)‖2
‖δ‖2

.

Since S is open, we can choose δ such that

‖Hf (x )δ‖2
‖δ‖2

= ‖Hf (x )‖2 .

Furthermore, since Hf (x) is symmetric, we have

‖Hf (x )‖ = max(|λmax(Hf (x ))|, |λmin(Hf (x ))|).

Then, as δ tends to zero, we have bounded spectral norm, ‖Hf (x )‖ ≤ β.

Now, we prove the other direction. Assume that ‖Hf (x )‖ ≤ β for all x ∈ S, except a measure zero
set. Consider x 6= y ∈ S and let x θ = x + θ(y − x ). Since S is convex, x θ ∈ S for any θ ∈ [0, 1].
By the fundamental theorem of calculus,

∇f(y) = ∇f(x ) +

∫ 1

0
Hf (x θ)(y − x )dθ.
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Thus, we have

‖∇f(y)−∇f(x )‖2 =

∥∥∥∥∫ 1

0
Hf (x θ)(y − x )dθ

∥∥∥∥
2

≤
∫ 1

0
‖Hf (x θ)(y − x )‖2 dθ

≤
∫ 1

0
‖Hf (x θ)‖ ‖y − x‖2 dθ

≤
∫ 1

0
β ‖y − x‖2 dθ

= β ‖y − x‖2 .

Exercise 3

Prove that when running Gradient Descent, ‖x i − x ∗‖2 ≤ ‖x 0 − x ∗‖2 for all i.

Solution.

We assume f is β-Lipschitz continuous and convex, our prerequisites for gradient descent. Since f
is convex, we have

f(x i)− f(x ∗) ≤∇f(x i)
>(x i − x ∗).

By using x i+1 = x i − 1
β∇f(x i), we will get

f(x i)− f(x ∗) ≤ β(x i − x i+1)
>(x i − x ∗).

We know that 2v>u = ‖v‖22 + ‖u‖22 − ‖v − u‖22 for two vectors v ,u . Thus, we have

f(x i)− f(x ∗) ≤ β

2
(‖x i − x i+1‖22 + ‖x i − x ∗‖22 − ‖x i+1 − x ∗‖22)

=
1

2β
‖∇f(x i)‖22 +

β

2
(‖x i − x ∗‖22 − ‖x i+1 − x ∗‖22).

Therefore, the above inequality yields

‖x i+1 − x ∗‖22 ≤ ‖x i − x ∗‖22 −
2

β
(f(x i)− f(x ∗)−

‖∇f(x i)‖22
2β

).

Since

f(x i)− f(x ∗) ≥ f(x i)− f(x i+1) ≥
‖∇f(x i)‖22

2β
,

then
‖x i+1 − x ∗‖22 ≤ ‖x i − x ∗‖22 .

Therefore, we can conclude that for any i ≥ 1,

‖x i+1 − x ∗‖2 ≤ ‖x 0 − x ∗‖2 .
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Exercise 4

Prove the following theorem.

Theorem. Let f : Rn → R be an β-gradient Lipschitz, convex function. Let x 0 be a given starting
point, and let x ∗ ∈ arg minx∈Rn f(x ) be a minimizer of f . The Gradient Descent algorithm given
by x i+1 = x i − 1

β∇f(x i) ensures that the kth iterate satisfies

f(x k)− f(x ∗) ≤
2β ‖x 0 − x ∗‖22

k + 1
.

Hint: do an induction on 1/gapi.

Solution.

Let C = β ‖x 0 − x ∗‖22. We want to prove that for any integer i ≥ 0

gapi ≤
2C

i+ 1
. (1)

In the following, we assume gapi > 0 for all i: if this is ever violated, the algorithm has reached
the optimum and will stay there as the gradient is then zero – and in that case Equation (1) holds.

We will prove Equation (1) by proving by induction that 1
gapi
≥ i+1

2C . For the base case, using that
f is β-gradient Lipschitz, we have

gap0 = f(x 0)− f(x ∗) ≤∇f(x ∗)>(x 0 − x ∗) +
β

2
‖x 0 − x ∗‖22 =

β

2
‖x 0 − x ∗‖22 = C/2 ≤ 2C.

This rearranges to 1
gap0
≥ 0+1

2C . From the lecture we know that

gapi+1 − gapi ≤ −
gap2

i

2C
.

Since we can assume gapi+1 > 0, and we have gapi ≥ gapi+1, diving through by gapi · gapi+1 gives

1

gapi
− 1

gapi+1

≤ − gap2
i

2Cgapi · gapi+1

≤ − 1

2C
.

Finally, we have that 1
gapi+1

≥ 1
2C + 1

gapi
≥ (i+1)+1

2C using the induction hypothesis.

Exercise 5

1. For each of the following functions answer these questions:

• Is the function convex?

• Is the function β-gradient Lipschitz for some β?

• If the function is β-gradient Lipschitz give an upper bound on β – the bound should be
within a factor 4 of the true value.
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(a) f(x) = |x|1.5 on x ∈ R
(b) f(x) = exp(x) on x ∈ R
(c) f(x) = exp(x) on x ∈ (−1, 1)

(d) f(x, y) =
√
x+ y on (x, y) ∈ (0, 1)× (0, 1).

(e) f(x, y) =
√
x+ y on (x, y) ∈ (1/2, 1)× (1/2, 1).

(f) f(x, y) =
√
x2 + y2 on (x, y) ∈ R2.

Solution.

(a) Function f(x) = |x|1.5 on x ∈ R is convex but it is not β-gradient Lipschitz. We have

∇f(x) =
3

2
|x|−

1
2x and Hf (x) =

3

4
|x|−

1
2 .

Since Hf (x) is positive semidefinite, function f is convex. However, it is not β-Lipschitz
gradient for any β because ‖Hf (x)‖2 tends to infinity when we let x go to zero, which implies
that ‖Hf (x)‖2 cannot be upper-bounded.

(b) Function f(x) = exp(x) on x ∈ R is convex but it is not β-gradient Lipschitz. We have
Hf (x) = exp(x). Function f is convex because exp(x) ≥ 0 for any x ∈ R, but it is not
β-gradient Lipschitz because exp(x) is not bounded on R.

(c) Function f(x) = exp(x) on x ∈ (−1, 1) is convex and β-gradient Lipschitz for β = exp(1).
We know that Hf (x) = exp(x). Since exp(x) ≥ 0 for any x ∈ (−1, 1), then it is convex.
Furthermore, since exp(−1) < exp(x) < exp(1) for x ∈ (−1, 1), then f is β-gradient Lipschitz
for β = exp(1). If we set x = 0, then the eigenvalue of Hf (x) is equal to 1 which implies that
β ≥ 1 by using ‖λmax(Hf (x ))‖2 ≤ β from Exercise 1. Therefore, the upper bound of exp(1)
is within a factor exp(1) < 4 from the true value (actually, 1 + ε for any ε > 0).

(d) Function f(x, y) =
√
x+ y on (x, y) ∈ (0, 1)×(0, 1) is neither convex nor β-gradient Lipschitz

for any β. We have

Hf (x, y) =

[
− 1

4(x+y)3/2
− 1

4(x+y)3/2

− 1
4(x+y)3/2

− 1
4(x+y)3/2

]
.

For a non-zero vector z = [z1, z2]
>, we have z>Hf (x, y)z = −(z1 + z2)

2/4(x + y)3/2 which
is negative for any (x, y) ∈ (0, 1) × (0, 1). Thus, f is not convex. Furthermore, it is not
β-gradient Lipschitz because ‖Hf (x, y)‖2 = 1

2(x+y)3/2
which is not bounded on (0, 1)× (0, 1).

(e) Function f(x, y) =
√
x+ y on (x, y) ∈ (1/2, 1) × (1/2, 1) is not convex but it is 1

2 -gradient
Lipschitz. We know that

Hf (x, y) =

[
− 1

4(x+y)3/2
− 1

4(x+y)3/2

− 1
4(x+y)3/2

− 1
4(x+y)3/2

]
.

With the same argument as above, f is not convex. However, it is β-gradient Lipschitz for
β = 1/2 because 1

25/2
≤ ‖Hf (x, y)‖2 = 1

2(x+y)3/2
≤ 1

2 on (x, y) ∈ (1/2, 1)× (1/2, 1).

5



(f) Function f(x, y) =
√
x2 + y2 on (x, y) ∈ R2 is convex but it is not β-gradient Lipschitz for

any β. We have

Hf (x, y) = (x2 + y2)−
3
2

[
y2 −xy
−xy x2

]
for x, y 6= 0 and

lim
(x,y)→(0,0)

Hf (x, y) = [∞,∞]>.

Furthermore, for any z = [z1, z2]
>, we have

z>Hf (x, y)z =
(z1y − z2x)2

(x2 + y2)
3
2

≥ 0

for all (x, y) ∈ R2. Therefore, Hf (x, y) is positive semidefinite for any (x, y) ∈ R2, which
implies that f is convex.

Bonus Exercise 6: Strongly Convex Functions

This longer exercise will teach you about strongly convex functions. In it, you will show that, with
a small tweak, gradient descent quickly converges to a highly accurate solutions on these functions.

Let f : Rn → R be a convex function. Assume f is twice continuously (Frechét) differentiable and
that its first and second (Frechét) derivatives are integrable (basically, don’t worry that weird stuff
is happening with the derivatives). Assume that for all x , we have for some constant µ > 0, that
λmin(Hf (x )) ≥ µ. When this holds, we say that f is µ-strongly convex.

Part A. Prove that for all x ,y ∈ Rn

f(y) ≥ f(x ) + ∇f(x )>(y − x ) +
µ

2
‖y − x‖22 .

Part B. Prove that there is value L ∈ R such that for all x ∈ Rn, we have f(x ) ≥ L. In other
words, the function is not unbounded below.

Part C. Prove that f is strictly convex as per Definition 3.2.8 in Chapter 3. Prove also that the
minimizer x ∗ ∈ arg minx∈Rn f(x ) of f is unique.

Part D. Let x 0 be a given starting point and x ∗ be the minimizer of f . Suppose we have
an algorithm DecentDescent which takes a starting point x 0, and a step count t ∈ N.
DecentDescent(x 0, t) runs for t steps and returns x̃ ∈ Rn such that

f(x̃ )− f(x ∗) ≤
γ ‖x 0 − x ∗‖22

t+ 1

where γ > 0 is a positive number.

Assume that the cost of running DecentDescent for t steps is t. Explain how, with a total cost
of at most 8γ

µ log(‖x 0 − x ∗‖2 /δ), we can produce a point x̂ ∈ Rn such that ‖x̂ − x ∗‖2 ≤ δ for
δ > 0.
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Part E. Consider a function h : Rn → R which is both µ-strongly convex and β-gradient Lipschitz.
Give an algorithm that returns x ′ with

h(x ′)− h(x ∗) ≤ ε

by computing the gradient of h at at most 32β
µ log(2β ‖x 0 − x ∗‖22 /ε) points.

Solution.

Part A. Let z be an arbitrary vector in Rn. Since Hf (z ) is symmetric, by applying the Courant-
Fischer theorem, we have

λmin(Hf (z )) = min
u∈Rn,u 6=0

u>Hf (z )u

u>u
.

We know that λmin(Hf (z )) ≥ µ. Therefore, for any u ∈ Rn

u>Hf (z )u ≥ µ ‖u‖22 . (2)

(Note Equation (2) trivially holds for u = 0.)

Furthermore, based on Taylor’s theorem for any x ,y ∈ Rn, there exits z ∈ Rn such that

f(y) = f(x ) + ∇f(x )>(y − x ) +
1

2
(y − x )>Hf (z )(y − x ). (3)

Combining Equations (2) and (3), we conclude that for any x ,y ∈ Rn

f(y) ≥ f(x ) + ∇f(x )>(y − x ) +
1

2
µ ‖y − x‖22 .

Part B. Consider a fixed vector x ∈ Rn with bounded f(x ) and ∇f(x ). From Part A, we know
that for any y ∈ Rn

f(y) ≥ f(x ) + ∇f(x )>(y − x ) +
1

2
µ ‖y − x‖22

= f(x ) +
1

2
µ

(
y − x +

1

µ
∇f(x )

)2

− 1

2
µ

∥∥∥∥ 1

µ
∇f(x )

∥∥∥∥2
2

≥ f(x )− 1

2µ
‖∇f(x )‖22 .

Since x is fixed, L = f(x )− 1
2µ ‖∇f(x )‖22 is a constant lower bound on f(y).

Part C. Consider two arbitrary vectors x 6= y ∈ Rn and θ ∈ (0, 1). Let z = θx + (1− θ)y , which
implies that x − z = (1− θ)(x − y) and y − z = θ(y − x ). Now, by applying Part A we have

f(x ) ≥ f(z ) + ∇f(z )>((1− θ)(x − y)) +
µ

2
(1− θ) ‖x − y‖22 (4)

and
f(y) ≥ f(z ) + ∇f(z )>(θ(y − x )) +

µ

2
θ ‖x − y‖22 (5)
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By multiplying Equation (4) by θ and Equation (5) by 1− θ and summing them up we get

θf(x ) + (1− θ)f(y) ≥ f(z ) + µθ(1− θ) ‖x − y‖22 .

Since µ > 0, θ ∈ (0, 1), and y 6= x , the term µθ(1− θ) ‖y − x‖22 is strictly positive. Therefore, we
have that

θf(x ) + (1− θ)f(y) > f(θx + (1− θ)y)

which implies that f is strictly convex.

Next, we show that if arg minx∈Rn f(x ) is non-empty, then it has exactly one element. Assume
that f attains a minimum f∗ at both x 1 and x 2, where x 1 6= x 2. Since f is strictly convex, we
have that

f(
1

2
x 1 +

1

2
x 2) <

1

2
f(x 1) +

1

2
f(x 2) =

1

2
f∗ +

1

2
f∗ = f∗.

This is a contradiction.

Part D. Set t′ = 8γ/µ. We observe that DecentDescent(x 0, t
′) returns x t′ such that

f(x t′)− f(x ∗) ≤
γ ‖x 0 − x ∗‖22

t′ + 1
≤
µ ‖x 0 − x ∗‖22

8
.

Furthermore, from Part A we know that

µ

2
‖x t′ − x ∗‖22 ≤ f(x t′)− f(x ∗)

where we used ∇f(x ∗) = 0.

Combining the above two equations implies that

µ

2
‖x t′ − x ∗‖22 ≤

µ ‖x 0 − x ∗‖22
8

⇒ ‖x t′ − x ∗‖2 ≤
‖x 0 − x ∗‖2

2
.

Now, by setting x 0 to be x t′ and applying the above argument iteratively we can conclude that for
any k ≥ 1

‖x kt′ − x ∗‖2 ≤
‖x 0 − x ∗‖2

2k
.

Thus, for k′ = log(
‖x0−x∗‖2

δ ), we have

‖x k′t′ − x ∗‖2 ≤ δ.

Therefore, with a total cost of at most t′k′ = 8γ
µ log(‖x 0 − x ∗‖2 /δ), we can produce a point

x̂ = x t′k′ ∈ Rn such that ‖x̂ − x ∗‖2 ≤ δ.

Part E. We know that after t steps of Gradient Descent, each of which requires one computation
of the gradient of function h, we obtain a point x t such that

h(x t)− h(x ∗) ≤
2β ‖x 0 − x ∗‖22

t+ 1
.
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Notice that this is the same as DecentDescent from Part D for γ = 2β. Therefore, if we set
δ =

√
4ε/γ, after

t′ =
8γ

µ
log

(
‖x 0 − x ∗‖2

δ

)
=

16β

µ
log

(√
β

2ε
‖x 0 − x ∗‖2

)

=
8β

µ
log

(
β ‖x 0 − x ∗‖22

2ε

)

≤ 32β

µ
log

(
2β ‖x 0 − x ∗‖22

ε

)

steps, we obtain x ′ such that ∥∥x ′ − x ∗
∥∥
2
≤
√

2ε

β
. (6)

Furthermore, since h is β-gradient Lipschitz, we have

h(x ′)− h(x ∗) ≤∇h(x ∗)>(x ′ − x ∗) +
β

2

∥∥x ′ − x ∗
∥∥2
2

=
β

2

∥∥x ′ − x ∗
∥∥2
2

(7)

where we used that ∇h(x∗) = 0.

Combining Equation (6) and Equation (7) yields

h(x ′)− h(x ∗) ≤ β

2

(√
2ε

β

)2

= ε.

Thus, by computing the gradient of h for at most 32β
µ log(2β ‖x 0 − x ∗‖22 /ε) times, we can find x ′

such that h(x ′)− h(x ∗) ≤ ε.
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