
Advanced Graph Algorithms and Optimization Spring 2023

Spectral Graph Theory

R. Kyng & M. Probst Problem Set 3 — Wednesday, March 8

These exercises will not count toward your grade, but you are encouraged to solve them all. This
exercise sheet contains exercises relating to lectures in Weeks 3. We encourage you to start the
exercises early so you have time to get through everything.

To get feedback, you must hand in your solutions by 23:59 on March 16. Both hand-written and
LATEX solutions are acceptable, but we will only attempt to read legible text.

Exercise 1

Let Pn be the path from vertex 1 to n and G1,n be the graph with only the edge between vertex 1
and n. Furthermore, assume that the edge between vertex i and i + 1 has positive weight wi for
1 ≤ i ≤ n− 1. Prove that

G1,n ⪯

(
n−1∑
i=1

1

wi

)
n−1∑
i=1

wiGi,i+1.

Solution

Note that this inequality is a weighted version of the path inequality you have seen in class. We
are going to apply the Cauchy-Schwarz inequality in a similar fashion as in the unweighted case.
Let x ∈ Rn be an arbitrary vector and define ∆(i) = x (i+ 1)− x (i). We set γ(i) = ∆(i)

√
wi and

let w− 1
2 denote the vector for which w− 1

2 (i) = 1/
√
wi. Then, we have that

n−1∑
i=1

∆(i) = γ⊤w− 1
2 ,

∥∥∥w− 1
2

∥∥∥2
2
=

n−1∑
i=1

1

wi
, and ∥γ∥22 =

n−1∑
i=1

∆(i)2wi.

Therefore, we get

x⊤LG1,nx =

(
n−1∑
i=1

∆(i)

)2

=
(
γ⊤w− 1

2

)2
≤
(
∥γ∥2 ·

∥∥∥w− 1
2

∥∥∥
2

)2
=

(
n−1∑
i=1

1

wi

)
n−1∑
i=1

∆(i)2wi

=

(
n−1∑
i=1

1

wi

)
x⊤

(
n−1∑
i=1

wiLGi,i+1

)
x .
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where we used the Cauchy-Schwarz inequality. Now, we can conclude that

G1,n ⪯

(
n−1∑
i=1

1

wi

)
n−1∑
i=1

wiGi,i+1.

Exercise 2

In Chapter 4, we proved that

λ2(Td) ≥
1

(n− 1) log2 n
.

Improve this bound to λ2(Td) ≥ 1/cn for some constant c > 0.

Hint: Use the result of previous exercise.

Solution

Let w : E → R+ be a positive function where E is the edge set of Td. We define T i,j
d to be the

unique path between two vertices i and j in Td. Furthermore, for any edge e ∈ E, we let Ge be the
graph with n vertices and only edge e being present. Using Part A, we have that

Kn =
∑
i<j

Gi,j

⪯
∑
i<j


 ∑

e∈T i,j
d

1

w(e)


 ∑

e∈T i,j
d

w(e)Ge




⪯

max
i<j

∑
e∈T i,j

d

1

w(e)


∑

i<j

∑
e∈T i,j

d

w(e)Ge


Assume that the root is in level 0 and the leaves are in level d. Then, for each edge e between level
i and i+ 1 for i ∈ {0, 1, . . . , d− 1}, we define w(e) = 2i. Therefore, we get

max
i<j

∑
e∈T i,j

d

1

w(e)
= 2

d−1∑
i=0

2−i ≤ 4.

For an edge e, let pe be the number of paths T i,j
d which include edge e. Assume that e is between

the i-th level and the (i+ 1)-th level, since e is a cut edge we have

pe =
(
2d−i − 1

)((
2d+1 − 1

)
−
(
2d−i − 1

))
≤ 2d−i · 2d+1 = 22d+1 · 2−i.
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Therefore, we have that

Kn ⪯ 4
∑
i<j

∑
e∈T i,j

d

w(e)Ge

= 4
∑
e∈E

w(e) · pe ·Ge

⪯ 4
∑
e∈E

2i · 22d+1 · 2−i ·Ge

⪯ 4
∑
e∈E

n2 ·Ge

= 4n2Td.

Hence, we conclude that

λ2(Td) ≥
1

4n2
λ2(Kn) =

1

4n
.

Exercise 3

Find the conductance ϕ ∈ (0, 1] for the following graphs:

1. the complete graph Kn over n vertices.

2. the path graph Pn over n vertices.

Solution

Recall that

ϕ(G) = min
∅⊂S⊂V

|E(S, V \ S)|
min{vol(S), vol(V \ S)}

.

We assume n to be an even number, the case where n is odd is similar.

1. For any bipartition (S, V \ S) of Kn with k = |S| ≤ n/2, we have

ϕ(S) =
k(n− k)

k(n− 1)
=
n− k

n− 1
.

Note that this ratio becomes smaller the larger k (for k ≤ n/2), so the minimum conductance
is achieved on any set with S of size n/2, which gives

ϕ(Kn) =
n

2(n− 1)
.

2. Since ϕ is smaller with less cut edges, we thus use the bipartition of Pn with the form
of S = {1, 2, . . . , k} and V \ S = {k + 1, . . . , n}, where we only have one cut edge, i.e.,
|E(S, V \ S)| = 1. Again, it is not hard to see that ϕ(G) is achieved when |S| = n/2 where

ϕ(S) =
1

1 + 2(n/2− 1)
=

1

n− 1
= ϕ(Pn).
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Exercise 4

Show that λ2(L) ̸= 0 if and only if G is connected. Argue that the same applies for N .

Solution

• “⇒”
It is equivalent to prove that if G is disconnected, then λ2(L) = 0. We only prove in the
case of G being an unweighted graph. Note that it is also true for weighted graphs. Since G
is disconnected, denote {C1, · · · , Ck}, k ≥ 2 as the connnected components of G. To prove
λ2(L) = 0, we need to show there exists a vector y ⊥ 1 s.t. Ly = 0. We choose y = 1Ci −α1
as a test vector for the second eigenvalue of L, where 1Ci is a vector with entries corresponding
to vertices in Ci being 1 and the rest entries being 0, and α is some scalar. We can compute
α to make y ⊥ 1:

(1Ci − α1)⊤1 = 1⊤Ci
1− α1⊤1 = |Ci| − α|V | = 0,

thus, α = |Ci|/|V |. Also, we have,

y⊤Ly =(1Ci − α1)⊤L(1Ci − α1)

= 1⊤Ci
L1Ci L1 = 0

=
∑

(u,v)∈E

(1Ci(u)− 1Ci(v))
2

= 0 u and v belong to the same connected component

According to the Courant-Fischer Theorem, we have

λ2(L) = min
x⊥1,x ̸=0

x⊤Lx

x⊤x
≤ y⊤Ly

y⊤y
= 0.

Also knowing that L is PSD, we can conclude that λ2(L) = 0.

• “⇐”
We prove by contradiction. We assume that G is connected and λ2(L) = 0. Then, we know
there exists y ⊥ 1 s.t. Ly = 0, thus, y⊤Ly = 0. Since

y⊤Ly =
∑

(u,v)∈E

(y(u)− y(v))2 = 0,

we must have y = α1 since G is connected, which is contradiactory to our assumption that
y ⊥ 1.

To argue that the same applies for N , similar proof strategies can be used. Just noticing that the

eigenvector corresponding to ν1 = 0 is ψ1 = D
1
21. (Details will be in the board notes for exercise

session 4).
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Exercise 5

A quite related concept to conductance is sparsity : we define the sparsity of a cut ∅ ⊂ S ⊂ V by

σ(S) =
|E(S, V \ S)|

min{|S|, |V \ S|}
.

An alternative version of Cheeger’s inequality relates the second eigenvalue of L (not N ) to the
sparsity of the graph σ(G) = min∅⊂S⊂V σ(S):

λ2(L)

2
≤ σ(G) ≤

√
2dmax · λ2(L)

where dmax is the maximum degree of any vertex in the graph.

Prove the lower bound on σ(G), i.e. that λ2(L)
2 ≤ σ(G).

Hint: Follow closely the proof of of the lower bound in Cheeger’s inequality and try to understand
what has to be adapted.

Solution

Observe that we can write

σ(G) = min
∅⊂S⊂V,|S|≤|V |/2

1⊤SL1S

1⊤S 1S
.

Meanwhile, according to Courant-Fischer, we have

λ2(L) = min
x⊥1,x ̸=0

x⊤Lx

x⊤x
.

If for each 1S , we can find a vector yS ⊥ 1 s.t.

λ2(L) ≤
y⊤
SLyS

y⊤
S yS

≤ 2
1⊤SL1S

1⊤S 1S
,

then we are done.

We can choose yS = 1S − α · 1 with α = |S|/|V |, thus yS ⊥ 1. Then we compare the value of
numerator and denominator separately.

1. For the numerator, we have

y⊤
SLyS = (1S − α1)⊤L(1S − α1) = 1⊤SL1S ,

since we translate by the kernal of L.
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2. For the denominator, we have

y⊤
S yS = (1− α)2|S|+ α2|V \ S|

= (1− 2α+ α2)|S|+ α2(|V | − |S|)
= |S| − 2α|S|+ α2|V |
= |S| − 2 · |S|2/|V |+ |S|2/|V |
= |S| − |S|2/|V |

≥ 1

2
1⊤S 1S |S| ≤ |V |

2

Combining these two, we can obtain that for any S s.t. ∅ ⊂ S ⊂ V, |S| ≤ |V |/2, we have
y⊤
S LyS

y⊤
S yS

≤

2
1⊤
S L1S

1⊤
S 1S

, which completes our proof.

Exercise 6

In the lecture, we skipped various steps in the proof of Cheeger’s inequality. Show that

1. N is symmetric and in fact PSD. We recommend to prove this by proving the following
stronger statement: for any matrix A that is PSD, and any matrix C , we have that C⊤AC
is PSD.

2. Show that the normalization of z in the upper bound proof of Cheeger’s inequality can only

make the ratio we are interested in smaller. I.e. prove that z⊤Lz
z⊤Dz

≥ z⊤
scLz sc

z⊤
scDz sc

.

Hint: Argue first about the transformation of z to z c. One way of relating their denominator
is by minimizing over all choices of z c for c. For z c and z sc you should be able to prove an
equality.

3. We have also skipped proving that τ is sampled according to a valid probability distribution:
Show that

∫
τ P[τ = ℓ] dτ = 1.

Hint: Recall the properties of z sc.

4. Show that

Eτ [|E(Sτ , V \ Sτ )|] ≤
∑

{i,j}∈E

|z sc(i)− z sc(j)| · (|z sc(i)|+ |z sc(j)|)

by concluding the argument in the proof.

5. Standard Probabilistic Method: Consider a random variable X with a discrete distribution
and let Ω be the sample space. Argue that there exists an ω ∈ Ω with X(ω) ≥ E[X].

Hint: Recall the definition of expectation of a discrete random variable.

6. Using the probabilisitic method for Cheeger’s Inequality: recall that in our proof, we want

to argue that
Eτ [1⊤

S L1S]
Eτ [1⊤

SD1S]
≤
√
2 · z⊤

scLz sc

z⊤
scDz sc

implies that there exists an S with
1⊤
S L1S

1⊤
SD1S

≤√
2 · z⊤

scLz sc

z⊤
scDz sc

. There are two ways to prove this (feel free to choose just one):
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(a) you can prove this claim by considering Eτ

[
1⊤SL1S

]
≤
√

2 · z⊤
scLz sc

z⊤
scDz sc

· Eτ

[
1⊤SD1S

]
. Use

only linearity of expectation to obtain an expression with a single Eτ and apply the
probabilistic method, or

(b) you can prove that for any two discrete random variables X,Y > 0 with the same
distribution, we have that there exists an ω ∈ Ω with

X(ω)

Y (ω)
≤ E [X]

E [Y ]
.

Solution

1. For any x ̸= 0, we have

x⊤(C⊤AC )x =(Cx )⊤A(Cx )

=y⊤Ay denote y = Cx

≥0 A is PSD

which shows that, for any matric C , C⊤AC is PSD if A is PSD. Therefore, N is PSD

since N = D− 1
2LD− 1

2 and L is PSD. N is also symmetric since N⊤ = (D− 1
2LD− 1

2 )⊤ =

D− 1
2LD− 1

2 = N since L is symmetric and D− 1
2 is diagonal.

2. According to the lecture, z sc is z after centering and scaling operation (renumbering is
w.l.o.g.). We can thus express

z sc = β(z − α1), where z ⊥ d .

To prove z⊤Lz
z⊤Dz

≥ z⊤
scLz sc

z⊤
scDz sc

, we can also compare the value of numerator and denominator

separately.

• For the numerator, we have

z⊤
scLz sc = β2(z − α1)⊤L(z − α1) = β2z⊤Lz .

• For the denominator, we have

z⊤
scDz sc = β2(z − α1)⊤D(z − α1)

= β2(z⊤Dz − α1⊤Dz − αz⊤D1+ α21⊤D1)

= β2(z⊤Dz − 2αz⊤D1+ α21⊤D1) 1⊤Dz = (1⊤Dz )⊤ since it is a scalar

= β2(z⊤Dz − 2αz⊤d + α21⊤D1) D1 = d

= β2(z⊤Dz + α21⊤D1) z ⊥ d

≥ β2z⊤Dz α21⊤D1 ≥ 0

Combining these two, we can obtain that z⊤
scLz sc

z⊤
scDz sc

≤ β2z⊤Lz
β2z⊤Dz

= z⊤Lz
z⊤Dz

.
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3. Recall the probability density function

p(t) =

{
2|t| t ∈ [z sc(1), z sc(n)]
0 o.w.

Noted that after centering, we have z sc(1) ≤ 0 and z sc(n) ≥ 0. Moreover, we ensure z sc(1)
2+

z sc(n)
2 = 1 after scaling.∫

τ
P[τ = ℓ]dτ =

∫ 0

z sc(1)
−2τdτ +

∫ z sc(n)

0
2ττ

= −τ2
∣∣∣0
z sc(1)

+ τ2
∣∣∣z sc(n)

0

= z sc(1)
2 + z sc(n)

2

= 1.

4. According to the lecture notes, we have already shown that

Eτ [|E(Sτ , V \ Sτ )|] =
∑

{i,j}∈E
z sc(i)≤z sc(j)

sgn(j)z sc(j)
2 − sgn(i)z sc(i)

2.

It remains to prove that for any {i, j} ∈ E s.t. z sc(i) ≤ z sc(j), we have

sgn(j)z sc(j)
2 − sgn(i)z sc(i)

2 ≤ |z sc(i)− z sc(j)| · (|z sc(i)|+ |z sc(j)|).

We distinguish by cases:

• If sgn(i) = sgn(j), then

sgn(j)z sc(j)
2 − sgn(i)z sc(i)

2 = |z sc(j)
2 − z sc(i)

2|
= |(z sc(j)− z sc(i)) · (z sc(j) + z sc(i))|
= |z sc(i)− z sc(j)| · |z sc(i) + z sc(j)|
≤ |z sc(i)− z sc(j)| · (|z sc(i)|+ |z sc(j)|).

• If sgn(i) ̸= sgn(j), which, more specifically, must be the case of sgn(i) = −1 and sgn(j) =
+1 since z sc(i) ≤ z sc(j), then

sgn(j)z sc(j)
2 − sgn(i)z sc(i)

2 = z sc(i)
2 + z sc(j)

2

= (−z sc(i))
2 + z sc(j)

2

≤ (−z sc(i) + z sc(j))
2

= (−z sc(i) + z sc(j)) · (|z sc(i)|+ |z sc(j)|)
= |z sc(i)− z sc(j)| · (|z sc(i)|+ |z sc(j)|).

5. Recall the definition of expectation of a discrete random variable, we have

E[X] =
∑
ω∈Ω

P(ω)X(ω),

where
∑

ω∈Ω P(ω) = 1.

Denote X(ω∗) = maxω∈ΩX(ω), then

X(ω∗) =
∑
ω∈Ω

P(ω)X(ω∗) ≥
∑
ω∈Ω

P(ω)X(ω) = E[X].
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6. (a) Rearranging and using Linearity of Expectation, we obtain

Eτ

[
1⊤SL1S

]
≤ Eτ

[√
2 · z

⊤
scLz sc

z⊤
scDz sc

1⊤SD1S

]
,

Eτ

[
1⊤SL1S −

√
2 · z

⊤
scLz sc

z⊤
scDz sc

1⊤SD1S

]
≤ 0.

Now, we can apply the standard probabilistic method, and know there exists an S∗ such
that

1⊤S∗L1S∗ −

√
2 · z

⊤
scLz sc

z⊤
scDz sc

1⊤S∗D1S∗ ≤ 0,

thus

1⊤S∗L1S∗

1⊤S∗D1S∗
≤

√
2 · z

⊤
scLz sc

z⊤
scDz sc

.

(b) Since X and Y are from the same distribution, according to the definition of expectation,
we have

E[X] =
∑
ω∈Ω

P(ω)X(ω),

E[Y ] =
∑
ω∈Ω

P(ω)Y (ω).

Then,

E[X]

E[Y ]
=

∑
ω∈Ω P(ω)X(ω)∑
ω∈Ω P(ω)Y (ω)

≥ min
ω∈Ω

P(ω)X(ω)

P(ω)Y (ω)
= min

ω∈Ω

X(ω)

Y (ω)
:=

X(ω∗)

Y (ω∗)
,

where the inequality comes from mini ai/bi ≤
∑

i ai/
∑

i bi, ai, bi ≥ 0.
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