Spectral Graph Theory

R. Kyng 8 M. Probst

Problem Set 3 - Wednesday, March 8

These exercises will not count toward your grade, but you are encouraged to solve them all. This exercise sheet contains exercises relating to lectures in Weeks 3 . We encourage you to start the exercises early so you have time to get through everything.

To get feedback, you must hand in your solutions by 23:59 on March 16. Both hand-written and LATEX solutions are acceptable, but we will only attempt to read legible text.

Exercise 1

Let P_{n} be the path from vertex 1 to n and $G_{1, n}$ be the graph with only the edge between vertex 1 and n. Furthermore, assume that the edge between vertex i and $i+1$ has positive weight w_{i} for $1 \leq i \leq n-1$. Prove that

$$
G_{1, n} \preceq\left(\sum_{i=1}^{n-1} \frac{1}{w_{i}}\right) \sum_{i=1}^{n-1} w_{i} G_{i, i+1} .
$$

Solution

Note that this inequality is a weighted version of the path inequality you have seen in class. We are going to apply the Cauchy-Schwarz inequality in a similar fashion as in the unweighted case. Let $\boldsymbol{x} \in \mathbb{R}^{n}$ be an arbitrary vector and define $\boldsymbol{\Delta}(i)=\boldsymbol{x}(i+1)-\boldsymbol{x}(i)$. We set $\boldsymbol{\gamma}(i)=\boldsymbol{\Delta}(i) \sqrt{w_{i}}$ and let $\boldsymbol{w}^{-\frac{1}{2}}$ denote the vector for which $\boldsymbol{w}^{-\frac{1}{2}}(i)=1 / \sqrt{w_{i}}$. Then, we have that

$$
\sum_{i=1}^{n-1} \boldsymbol{\Delta}(i)=\boldsymbol{\gamma}^{\top} \boldsymbol{w}^{-\frac{1}{2}}, \quad\left\|\boldsymbol{w}^{-\frac{1}{2}}\right\|_{2}^{2}=\sum_{i=1}^{n-1} \frac{1}{w_{i}}, \quad \text { and } \quad\|\boldsymbol{\gamma}\|_{2}^{2}=\sum_{i=1}^{n-1} \boldsymbol{\Delta}(i)^{2} w_{i} .
$$

Therefore, we get

$$
\begin{aligned}
\boldsymbol{x}^{\top} \boldsymbol{L}_{G_{1, n}} \boldsymbol{x} & =\left(\sum_{i=1}^{n-1} \boldsymbol{\Delta}(i)\right)^{2} \\
& =\left(\gamma^{\top} \boldsymbol{w}^{-\frac{1}{2}}\right)^{2} \\
& \leq\left(\|\boldsymbol{\gamma}\|_{2} \cdot\left\|\boldsymbol{w}^{-\frac{1}{2}}\right\|_{2}\right)^{2} \\
& =\left(\sum_{i=1}^{n-1} \frac{1}{w_{i}}\right) \sum_{i=1}^{n-1} \boldsymbol{\Delta}(i)^{2} w_{i} \\
& =\left(\sum_{i=1}^{n-1} \frac{1}{w_{i}}\right) \boldsymbol{x}^{\top}\left(\sum_{i=1}^{n-1} w_{i} \boldsymbol{L}_{G_{i, i+1}}\right) \boldsymbol{x} .
\end{aligned}
$$

where we used the Cauchy-Schwarz inequality. Now, we can conclude that

$$
G_{1, n} \preceq\left(\sum_{i=1}^{n-1} \frac{1}{w_{i}}\right) \sum_{i=1}^{n-1} w_{i} G_{i, i+1} .
$$

Exercise 2

In Chapter 4, we proved that

$$
\lambda_{2}\left(T_{d}\right) \geq \frac{1}{(n-1) \log _{2} n}
$$

Improve this bound to $\lambda_{2}\left(T_{d}\right) \geq 1 / c n$ for some constant $c>0$.
Hint: Use the result of previous exercise.

Solution

Let $w: E \rightarrow \mathbb{R}^{+}$be a positive function where E is the edge set of T_{d}. We define $T_{d}^{i, j}$ to be the unique path between two vertices i and j in T_{d}. Furthermore, for any edge $e \in E$, we let G_{e} be the graph with n vertices and only edge e being present. Using Part A, we have that

$$
\begin{aligned}
K_{n} & =\sum_{i<j} G_{i, j} \\
& \preceq \sum_{i<j}\left(\left(\sum_{e \in T_{d}^{i, j}} \frac{1}{w(e)}\right)\left(\sum_{e \in T_{d}^{i, j}} w(e) G_{e}\right)\right) \\
& \preceq\left(\max _{i<j} \sum_{e \in T_{d}^{i, j}} \frac{1}{w(e)}\right)\left(\sum_{i<j} \sum_{e \in T_{d}^{i, j}} w(e) G_{e}\right)
\end{aligned}
$$

Assume that the root is in level 0 and the leaves are in level d. Then, for each edge e between level i and $i+1$ for $i \in\{0,1, \ldots, d-1\}$, we define $w(e)=2^{i}$. Therefore, we get

$$
\max _{i<j} \sum_{e \in T_{d}^{i, j}} \frac{1}{w(e)}=2 \sum_{i=0}^{d-1} 2^{-i} \leq 4 .
$$

For an edge e, let p_{e} be the number of paths $T_{d}^{i, j}$ which include edge e. Assume that e is between the i-th level and the $(i+1)$-th level, since e is a cut edge we have

$$
p_{e}=\left(2^{d-i}-1\right)\left(\left(2^{d+1}-1\right)-\left(2^{d-i}-1\right)\right) \leq 2^{d-i} \cdot 2^{d+1}=2^{2 d+1} \cdot 2^{-i}
$$

Therefore, we have that

$$
\begin{aligned}
K_{n} & \preceq 4 \sum_{i<j} \sum_{e \in T_{d}^{i, j}} w(e) G_{e} \\
& =4 \sum_{e \in E} w(e) \cdot p_{e} \cdot G_{e} \\
& \preceq 4 \sum_{e \in E} 2^{i} \cdot 2^{2 d+1} \cdot 2^{-i} \cdot G_{e} \\
& \preceq 4 \sum_{e \in E} n^{2} \cdot G_{e} \\
& =4 n^{2} T_{d} .
\end{aligned}
$$

Hence, we conclude that

$$
\lambda_{2}\left(T_{d}\right) \geq \frac{1}{4 n^{2}} \lambda_{2}\left(K_{n}\right)=\frac{1}{4 n} .
$$

Exercise 3

Find the conductance $\phi \in(0,1]$ for the following graphs:

1. the complete graph K_{n} over n vertices.
2. the path graph P_{n} over n vertices.

Solution

Recall that

$$
\phi(G)=\min _{\emptyset \subset S \subset V} \frac{|E(S, V \backslash S)|}{\min \{\operatorname{vol}(S), \operatorname{vol}(V \backslash S)\}}
$$

We assume n to be an even number, the case where n is odd is similar.

1. For any bipartition $(S, V \backslash S)$ of K_{n} with $k=|S| \leq n / 2$, we have

$$
\phi(S)=\frac{k(n-k)}{k(n-1)}=\frac{n-k}{n-1} .
$$

Note that this ratio becomes smaller the larger k (for $k \leq n / 2$), so the minimum conductance is achieved on any set with S of size $n / 2$, which gives

$$
\phi\left(K_{n}\right)=\frac{n}{2(n-1)} .
$$

2. Since ϕ is smaller with less cut edges, we thus use the bipartition of P_{n} with the form of $S=\{1,2, \ldots, k\}$ and $V \backslash S=\{k+1, \ldots, n\}$, where we only have one cut edge, i.e., $|E(S, V \backslash S)|=1$. Again, it is not hard to see that $\phi(G)$ is achieved when $|S|=n / 2$ where

$$
\phi(S)=\frac{1}{1+2(n / 2-1)}=\frac{1}{n-1}=\phi\left(P_{n}\right) .
$$

Exercise 4

Show that $\lambda_{2}(\boldsymbol{L}) \neq 0$ if and only if G is connected. Argue that the same applies for \boldsymbol{N}.

Solution

- " \Rightarrow "

It is equivalent to prove that if G is disconnected, then $\lambda_{2}(\boldsymbol{L})=0$. We only prove in the case of G being an unweighted graph. Note that it is also true for weighted graphs. Since G is disconnected, denote $\left\{C_{1}, \cdots, C_{k}\right\}, k \geq 2$ as the connnected components of G. To prove $\lambda_{2}(\boldsymbol{L})=0$, we need to show there exists a vector $\boldsymbol{y} \perp \mathbf{1}$ s.t. $\boldsymbol{L} \boldsymbol{y}=\mathbf{0}$. We choose $\boldsymbol{y}=\mathbf{1}_{C_{i}}-\alpha \mathbf{1}$ as a test vector for the second eigenvalue of \boldsymbol{L}, where $\mathbf{1}_{C_{i}}$ is a vector with entries corresponding to vertices in \mathcal{C}_{i} being 1 and the rest entries being 0 , and α is some scalar. We can compute α to make $\boldsymbol{y} \perp \mathbf{1}$:

$$
\left(\mathbf{1}_{C_{i}}-\alpha \mathbf{1}\right)^{\top} \mathbf{1}=\mathbf{1}_{C_{i}}^{\top} \mathbf{1}-\alpha \mathbf{1}^{\top} \mathbf{1}=\left|C_{i}\right|-\alpha|V|=0
$$

thus, $\alpha=\left|C_{i}\right| /|V|$. Also, we have,

$$
\begin{aligned}
\boldsymbol{y}^{\top} \boldsymbol{L} \boldsymbol{y}= & \left(\mathbf{1}_{C_{i}}-\alpha \mathbf{1}\right)^{\top} \boldsymbol{L}\left(\mathbf{1}_{C_{i}}-\alpha \mathbf{1}\right) \quad \boldsymbol{L} \mathbf{1}=\mathbf{0} \\
& =\mathbf{1}_{C_{i}}^{\top} \boldsymbol{L} \mathbf{1}_{C_{i}} \\
& =\sum_{(u, v) \in E}\left(\mathbf{1}_{C_{i}}(u)-\mathbf{1}_{C_{i}}(v)\right)^{2}
\end{aligned}
$$

$$
=0 \quad u \text { and } v \text { belong to the same connected component }
$$

According to the Courant-Fischer Theorem, we have

$$
\lambda_{2}(\boldsymbol{L})=\min _{\boldsymbol{x} \perp \mathbf{1}, \boldsymbol{x} \neq \mathbf{0}} \frac{\boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x}}{\boldsymbol{x}^{\top} \boldsymbol{x}} \leq \frac{\boldsymbol{y}^{\top} \boldsymbol{L} \boldsymbol{y}}{\boldsymbol{y}^{\top} \boldsymbol{y}}=0 .
$$

Also knowing that \boldsymbol{L} is PSD, we can conclude that $\lambda_{2}(\boldsymbol{L})=0$.

- " \Leftarrow "

We prove by contradiction. We assume that G is connected and $\lambda_{2}(\boldsymbol{L})=0$. Then, we know there exists $\boldsymbol{y} \perp \mathbf{1}$ s.t. $\boldsymbol{L} \boldsymbol{y}=\mathbf{0}$, thus, $\boldsymbol{y}^{\top} \boldsymbol{L} \boldsymbol{y}=0$. Since

$$
\boldsymbol{y}^{\top} \boldsymbol{L} \boldsymbol{y}=\sum_{(u, v) \in E}(\boldsymbol{y}(u)-\boldsymbol{y}(v))^{2}=0,
$$

we must have $\boldsymbol{y}=\alpha \mathbf{1}$ since G is connected, which is contradiactory to our assumption that $y \perp 1$.

To argue that the same applies for \boldsymbol{N}, similar proof strategies can be used. Just noticing that the eigenvector corresponding to $\nu_{1}=0$ is $\psi_{1}=\boldsymbol{D}^{\frac{1}{2}} \mathbf{1}$. (Details will be in the board notes for exercise session 4).

Exercise 5

A quite related concept to conductance is sparsity: we define the sparsity of a cut $\emptyset \subset S \subset V$ by

$$
\sigma(S)=\frac{|E(S, V \backslash S)|}{\min \{|S|,|V \backslash S|\}}
$$

An alternative version of Cheeger's inequality relates the second eigenvalue of \boldsymbol{L} (not \boldsymbol{N}) to the sparsity of the graph $\sigma(G)=\min _{\emptyset \subset S \subset V} \sigma(S)$:

$$
\frac{\lambda_{2}(\boldsymbol{L})}{2} \leq \sigma(G) \leq \sqrt{2 d_{\max } \cdot \lambda_{2}(\boldsymbol{L})}
$$

where $d_{\max }$ is the maximum degree of any vertex in the graph.
Prove the lower bound on $\sigma(G)$, i.e. that $\frac{\lambda_{2}(\boldsymbol{L})}{2} \leq \sigma(G)$.
Hint: Follow closely the proof of of the lower bound in Cheeger's inequality and try to understand what has to be adapted.

Solution

Observe that we can write

$$
\sigma(G)=\min _{\emptyset \subset S \subset V,|S| \leq|V| / 2} \frac{\mathbf{1}_{S}^{\top} \boldsymbol{L} \mathbf{1}_{S}}{\mathbf{1}_{S}^{\top} \mathbf{1}_{S}} .
$$

Meanwhile, according to Courant-Fischer, we have

$$
\lambda_{2}(\boldsymbol{L})=\min _{\boldsymbol{x} \perp \mathbf{1}, \boldsymbol{x} \neq 0} \frac{\boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x}}{\boldsymbol{x}^{\top} \boldsymbol{x}} .
$$

If for each $\mathbf{1}_{S}$, we can find a vector $\boldsymbol{y}_{S} \perp \mathbf{1}$ s.t.

$$
\lambda_{2}(\boldsymbol{L}) \leq \frac{\boldsymbol{y}_{S}^{\top} \boldsymbol{L} \boldsymbol{y}_{S}}{\boldsymbol{y}_{S}^{\top} \boldsymbol{y}_{S}} \leq 2 \frac{\mathbf{1}_{S}^{\top} \boldsymbol{L} \mathbf{1}_{S}}{\mathbf{1}_{S}^{\top} \mathbf{1}_{S}},
$$

then we are done.
We can choose $\boldsymbol{y}_{S}=\mathbf{1}_{S}-\alpha \cdot \mathbf{1}$ with $\alpha=|S| /|V|$, thus $\boldsymbol{y}_{S} \perp \mathbf{1}$. Then we compare the value of numerator and denominator separately.

1. For the numerator, we have

$$
\boldsymbol{y}_{S}^{\top} \boldsymbol{L} \boldsymbol{y}_{S}=\left(\mathbf{1}_{S}-\alpha \mathbf{1}\right)^{\top} \boldsymbol{L}\left(\mathbf{1}_{S}-\alpha \mathbf{1}\right)=\mathbf{1}_{S}^{\top} \boldsymbol{L} \mathbf{1}_{S},
$$

since we translate by the kernal of \boldsymbol{L}.
2. For the denominator, we have

$$
\begin{array}{rlr}
\boldsymbol{y}_{S}^{\top} \boldsymbol{y}_{S} & =(1-\alpha)^{2}|S|+\alpha^{2}|V \backslash S| & \\
& =\left(1-2 \alpha+\alpha^{2}\right)|S|+\alpha^{2}(|V|-|S|) & \\
& =|S|-2 \alpha|S|+\alpha^{2}|V| & \\
& =|S|-2 \cdot|S|^{2} /|V|+|S|^{2} /|V| & \\
& =|S|-|S|^{2} /|V| & |S| \leq \frac{|V|}{2} \\
& \geq \frac{1}{2} \mathbf{1}_{S}^{\top} \mathbf{1}_{S} &
\end{array}
$$

Combining these two, we can obtain that for any S s.t. $\emptyset \subset S \subset V,|S| \leq|V| / 2$, we have $\frac{\boldsymbol{y}_{S}^{\top} L y_{S}}{\boldsymbol{y}_{S}^{\top} \boldsymbol{y}_{S}} \leq$ $2 \frac{1{ }_{S}^{\top} L 1_{S}}{1_{S}^{\top} 1_{S}}$, which completes our proof.

Exercise 6

In the lecture, we skipped various steps in the proof of Cheeger's inequality. Show that

1. \boldsymbol{N} is symmetric and in fact PSD. We recommend to prove this by proving the following stronger statement: for any matrix \boldsymbol{A} that is PSD , and any matrix \boldsymbol{C}, we have that $\boldsymbol{C}^{\top} \boldsymbol{A} \boldsymbol{C}$ is PSD.
2. Show that the normalization of \boldsymbol{z} in the upper bound proof of Cheeger's inequality can only make the ratio we are interested in smaller. I.e. prove that $\frac{z^{\top} L z}{z^{\top} D z} \geq \frac{z_{s c}^{\top} L z_{s c}}{z_{s c}^{\top} D z_{s c}}$.
Hint: Argue first about the transformation of \boldsymbol{z} to \boldsymbol{z}_{c}. One way of relating their denominator is by minimizing over all choices of \boldsymbol{z}_{c} for c. For \boldsymbol{z}_{c} and $\boldsymbol{z}_{s c}$ you should be able to prove an equality.
3. We have also skipped proving that τ is sampled according to a valid probability distribution: Show that $\int_{\tau} \mathbb{P}[\tau=\ell] d \tau=1$.
Hint: Recall the properties of $\boldsymbol{z}_{s c}$.
4. Show that

$$
\mathbb{E}_{\tau}\left[\left|E\left(S_{\tau}, V \backslash S_{\tau}\right)\right|\right] \leq \sum_{\{i, j\} \in E}\left|\boldsymbol{z}_{s c}(i)-\boldsymbol{z}_{s c}(j)\right| \cdot\left(\left|\boldsymbol{z}_{s c}(i)\right|+\left|\boldsymbol{z}_{s c}(j)\right|\right)
$$

by concluding the argument in the proof.
5. Standard Probabilistic Method: Consider a random variable X with a discrete distribution and let Ω be the sample space. Argue that there exists an $\omega \in \Omega$ with $X(\omega) \geq \mathbb{E}[X]$.
Hint: Recall the definition of expectation of a discrete random variable.
6. Using the probabilisitic method for Cheeger's Inequality: recall that in our proof, we want to argue that $\frac{\mathbb{E}_{\tau}\left[\mathbf{1}_{S}^{\top} \boldsymbol{L} \mathbf{1}_{S}\right]}{\mathbb{E}_{\tau}\left[\mathbf{1}_{S}^{\top} \boldsymbol{D} \mathbf{1}_{S}\right]} \leq \sqrt{2 \cdot \frac{z_{s c}^{\top} \boldsymbol{L} z_{s c}}{\boldsymbol{z}_{s c}^{\top} \boldsymbol{D} z_{s c}}}$ implies that there exists an S with $\frac{\mathbf{1}_{S}^{\top} \boldsymbol{L} \mathbf{1}_{S}}{\mathbf{1}_{S}^{\top} \boldsymbol{D} \mathbf{1}_{S}} \leq$ $\sqrt{2 \cdot \frac{z_{s c}^{\top} L z_{s c}}{z_{s c}^{\top} D z_{s c}}}$. There are two ways to prove this (feel free to choose just one):
(a) you can prove this claim by considering $\mathbb{E}_{\tau}\left[\mathbf{1}_{S}^{\top} \boldsymbol{L} \mathbf{1}_{S}\right] \leq \sqrt{2 \cdot \frac{\boldsymbol{z}_{s c}^{\top} \boldsymbol{L} \boldsymbol{z}_{s c}}{\boldsymbol{z}_{s c} \boldsymbol{D} \boldsymbol{z}_{s c}}} \cdot \mathbb{E}_{\tau}\left[\mathbf{1}_{S}^{\top} \boldsymbol{D} \mathbf{1}_{S}\right]$. Use only linearity of expectation to obtain an expression with a single \mathbb{E}_{τ} and apply the probabilistic method, or
(b) you can prove that for any two discrete random variables $X, Y>0$ with the same distribution, we have that there exists an $\omega \in \Omega$ with

$$
\frac{X(\omega)}{Y(\omega)} \leq \frac{\mathbb{E}[X]}{\mathbb{E}[Y]}
$$

Solution

1. For any $\boldsymbol{x} \neq \mathbf{0}$, we have

$$
\begin{aligned}
\boldsymbol{x}^{\top}\left(\boldsymbol{C}^{\top} \boldsymbol{A} \boldsymbol{C}\right) \boldsymbol{x} & =(\boldsymbol{C} \boldsymbol{x})^{\top} \boldsymbol{A}(\boldsymbol{C} \boldsymbol{x}) & & \\
& =\boldsymbol{y}^{\top} \boldsymbol{A} \boldsymbol{y} & & \text { denote } \boldsymbol{y}=\boldsymbol{C} \boldsymbol{x} \\
& \geq 0 & & \boldsymbol{A} \text { is PSD }
\end{aligned}
$$

which shows that, for any matric $\boldsymbol{C}, \boldsymbol{C}^{\top} \boldsymbol{A} \boldsymbol{C}$ is PSD if \boldsymbol{A} is PSD. Therefore, \boldsymbol{N} is PSD since $\boldsymbol{N}=\boldsymbol{D}^{-\frac{1}{2}} \boldsymbol{L} \boldsymbol{D}^{-\frac{1}{2}}$ and \boldsymbol{L} is PSD. \boldsymbol{N} is also symmetric since $\boldsymbol{N}^{\top}=\left(\boldsymbol{D}^{-\frac{1}{2}} \boldsymbol{L} \boldsymbol{D}^{-\frac{1}{2}}\right)^{\top}=$ $\boldsymbol{D}^{-\frac{1}{2}} \boldsymbol{L} \boldsymbol{D}^{-\frac{1}{2}}=\boldsymbol{N}$ since \boldsymbol{L} is symmetric and $\boldsymbol{D}^{-\frac{1}{2}}$ is diagonal.
2. According to the lecture, $\boldsymbol{z}_{s c}$ is \boldsymbol{z} after centering and scaling operation (renumbering is w.l.o.g.). We can thus express

$$
\boldsymbol{z}_{s c}=\beta(\boldsymbol{z}-\alpha \mathbf{1}), \text { where } \boldsymbol{z} \perp \boldsymbol{d}
$$

To prove $\frac{\boldsymbol{z}^{\top} \boldsymbol{L} \boldsymbol{z}}{\boldsymbol{z}^{\top} \boldsymbol{D} \boldsymbol{z}} \geq \frac{\boldsymbol{z}_{s c}^{\top} \boldsymbol{L} \boldsymbol{z}_{s c}}{\boldsymbol{z}_{s c}^{\top} \boldsymbol{D} \boldsymbol{z}_{s c}}$, we can also compare the value of numerator and denominator separately.

- For the numerator, we have

$$
\boldsymbol{z}_{s c}^{\top} \boldsymbol{L} \boldsymbol{z}_{s c}=\beta^{2}(\boldsymbol{z}-\alpha \mathbf{1})^{\top} \boldsymbol{L}(\boldsymbol{z}-\alpha \mathbf{1})=\beta^{2} \boldsymbol{z}^{\top} \boldsymbol{L} \boldsymbol{z}
$$

- For the denominator, we have

$$
\begin{aligned}
\boldsymbol{z}_{s c}^{\top} \boldsymbol{D} \boldsymbol{z}_{s c} & =\beta^{2}(\boldsymbol{z}-\alpha \mathbf{1})^{\top} \boldsymbol{D}(\boldsymbol{z}-\alpha \mathbf{1}) & & \\
& =\beta^{2}\left(\boldsymbol{z}^{\top} \boldsymbol{D} \boldsymbol{z}-\alpha \mathbf{1}^{\top} \boldsymbol{D} \boldsymbol{z}-\alpha \boldsymbol{z}^{\top} \boldsymbol{D} \mathbf{1}+\alpha^{2} \mathbf{1}^{\top} \boldsymbol{D} \mathbf{1}\right) & & \\
& =\beta^{2}\left(\boldsymbol{z}^{\top} \boldsymbol{D} \boldsymbol{z}-2 \alpha \boldsymbol{z}^{\top} \boldsymbol{D} \mathbf{1}+\alpha^{2} \mathbf{1}^{\top} \boldsymbol{D} \mathbf{1}\right) & & \mathbf{1}^{\top} \boldsymbol{D} \boldsymbol{z}=\left(\mathbf{1}^{\top} \boldsymbol{D} \boldsymbol{z}\right)^{\top} \text { since it is a scalar } \\
& =\beta^{2}\left(\boldsymbol{z}^{\top} \boldsymbol{D} \boldsymbol{z}-2 \alpha \boldsymbol{z}^{\top} \boldsymbol{d}+\alpha^{2} \mathbf{1}^{\top} \boldsymbol{D} \mathbf{1}\right) & & \boldsymbol{D} \mathbf{1}=\boldsymbol{d} \\
& =\beta^{2}\left(\boldsymbol{z}^{\top} \boldsymbol{D} \boldsymbol{z}+\alpha^{2} \mathbf{1}^{\top} \boldsymbol{D} \mathbf{1}\right) & & \boldsymbol{z} \perp \boldsymbol{d} \\
& \geq \beta^{2} \boldsymbol{z}^{\top} \boldsymbol{D} \boldsymbol{z} & & \alpha^{2} \mathbf{1}^{\top} \boldsymbol{D} \mathbf{1} \geq 0
\end{aligned}
$$

Combining these two, we can obtain that $\frac{\boldsymbol{z}_{s c}^{\top} \boldsymbol{L} z_{s c}}{\boldsymbol{z}_{s c}^{\top} \boldsymbol{D} \boldsymbol{z}_{s c}} \leq \frac{\beta^{2} \boldsymbol{z}^{\top} \boldsymbol{L} \boldsymbol{z}}{\beta^{2} \boldsymbol{z}^{\top} \boldsymbol{D} \boldsymbol{z}}=\frac{\boldsymbol{z}^{\top} \boldsymbol{L} \boldsymbol{z}}{z^{\top} \boldsymbol{D} \boldsymbol{z}}$.
3. Recall the probability density function

$$
p(t)=\left\{\begin{array}{cc}
2|t| & t \in\left[\boldsymbol{z}_{s c}(1), \boldsymbol{z}_{s c}(n)\right] \\
0 & \text { o.w. }
\end{array}\right.
$$

Noted that after centering, we have $\boldsymbol{z}_{s c}(1) \leq 0$ and $\boldsymbol{z}_{s c}(n) \geq 0$. Moreover, we ensure $\boldsymbol{z}_{s c}(1)^{2}+$ $\boldsymbol{z}_{s c}(n)^{2}=1$ after scaling.

$$
\begin{aligned}
\int_{\tau} \mathbb{P}[\tau=\ell] d \tau & =\int_{z_{s c}(1)}^{0}-2 \tau d \tau+\int_{0}^{z_{s c}(n)} 2 \tau \tau \\
& =-\left.\tau^{2}\right|_{z_{s c}(1)} ^{0}+\left.\tau^{2}\right|_{0} ^{z_{s c}(n)} \\
& =\boldsymbol{z}_{s c}(1)^{2}+\boldsymbol{z}_{s c}(n)^{2} \\
& =1 .
\end{aligned}
$$

4. According to the lecture notes, we have already shown that

$$
\mathbb{E}_{\tau}\left[\left|E\left(S_{\tau}, V \backslash S_{\tau}\right)\right|\right]=\sum_{\substack{\{i, j\} \in E \\ z_{s c}(i) \leq \boldsymbol{z}_{s c}(j)}} \operatorname{sgn}(j) \boldsymbol{z}_{s c}(j)^{2}-\operatorname{sgn}(i) \boldsymbol{z}_{s c}(i)^{2} .
$$

It remains to prove that for any $\{i, j\} \in E$ s.t. $\boldsymbol{z}_{s c}(i) \leq \boldsymbol{z}_{s c}(j)$, we have

$$
\operatorname{sgn}(j) \boldsymbol{z}_{s c}(j)^{2}-\operatorname{sgn}(i) \boldsymbol{z}_{s c}(i)^{2} \leq\left|\boldsymbol{z}_{s c}(i)-\boldsymbol{z}_{s c}(j)\right| \cdot\left(\left|\boldsymbol{z}_{s c}(i)\right|+\left|\boldsymbol{z}_{s c}(j)\right|\right)
$$

We distinguish by cases:

- If $\operatorname{sgn}(i)=\operatorname{sgn}(j)$, then

$$
\begin{aligned}
\operatorname{sgn}(j) \boldsymbol{z}_{s c}(j)^{2}-\operatorname{sgn}(i) \boldsymbol{z}_{s c}(i)^{2} & =\left|\boldsymbol{z}_{s c}(j)^{2}-\boldsymbol{z}_{s c}(i)^{2}\right| \\
& =\left|\left(\boldsymbol{z}_{s c}(j)-\boldsymbol{z}_{s c}(i)\right) \cdot\left(\boldsymbol{z}_{s c}(j)+\boldsymbol{z}_{s c}(i)\right)\right| \\
& =\left|\boldsymbol{z}_{s c}(i)-\boldsymbol{z}_{s c}(j)\right| \cdot\left|\boldsymbol{z}_{s c}(i)+\boldsymbol{z}_{s c}(j)\right| \\
& \leq\left|\boldsymbol{z}_{s c}(i)-\boldsymbol{z}_{s c}(j)\right| \cdot\left(\left|\boldsymbol{z}_{s c}(i)\right|+\left|\boldsymbol{z}_{s c}(j)\right|\right) .
\end{aligned}
$$

- If $\operatorname{sgn}(i) \neq \operatorname{sgn}(j)$, which, more specifically, must be the case of $\operatorname{sgn}(i)=-1$ and $\operatorname{sgn}(j)=$ +1 since $\boldsymbol{z}_{s c}(i) \leq \boldsymbol{z}_{s c}(j)$, then

$$
\begin{aligned}
\operatorname{sgn}(j) \boldsymbol{z}_{s c}(j)^{2}-\operatorname{sgn}(i) \boldsymbol{z}_{s c}(i)^{2} & =\boldsymbol{z}_{s c}(i)^{2}+\boldsymbol{z}_{s c}(j)^{2} \\
& =\left(-\boldsymbol{z}_{s c}(i)\right)^{2}+\boldsymbol{z}_{s c}(j)^{2} \\
& \leq\left(-\boldsymbol{z}_{s c}(i)+\boldsymbol{z}_{s c}(j)\right)^{2} \\
& =\left(-\boldsymbol{z}_{s c}(i)+\boldsymbol{z}_{s c}(j)\right) \cdot\left(\left|\boldsymbol{z}_{s c}(i)\right|+\left|\boldsymbol{z}_{s c}(j)\right|\right) \\
& =\left|\boldsymbol{z}_{s c}(i)-\boldsymbol{z}_{s c}(j)\right| \cdot\left(\left|\boldsymbol{z}_{s c}(i)\right|+\left|\boldsymbol{z}_{s c}(j)\right|\right) .
\end{aligned}
$$

5. Recall the definition of expectation of a discrete random variable, we have

$$
\mathbb{E}[X]=\sum_{\omega \in \Omega} \mathbb{P}(\omega) X(\omega),
$$

where $\sum_{\omega \in \Omega} \mathbb{P}(\omega)=1$.
Denote $X\left(\omega^{*}\right)=\max _{\omega \in \Omega} X(\omega)$, then

$$
X\left(\omega^{*}\right)=\sum_{\omega \in \Omega} \mathbb{P}(\omega) X\left(\omega^{*}\right) \geq \sum_{\omega \in \Omega} \mathbb{P}(\omega) X(\omega)=\mathbb{E}[X] .
$$

6. (a) Rearranging and using Linearity of Expectation, we obtain

$$
\begin{aligned}
& \mathbb{E}_{\tau}\left[\mathbf{1}_{S}^{\top} \boldsymbol{L} \mathbf{1}_{S}\right] \leq \mathbb{E}_{\tau}\left[\sqrt{2 \cdot \frac{\boldsymbol{z}_{s c}^{\top} \boldsymbol{L} \boldsymbol{z}_{s c}}{\boldsymbol{z}_{s c}^{\top} \boldsymbol{D} \boldsymbol{z}_{s c}}} \mathbf{1}_{S}^{\top} \boldsymbol{D} \mathbf{1}_{S}\right], \\
& \mathbb{E}_{\tau}\left[\mathbf{1}_{S}^{\top} \boldsymbol{L} \mathbf{1}_{S}-\sqrt{\left.2 \cdot \frac{\boldsymbol{z}_{s c}^{\top} \boldsymbol{L} \boldsymbol{z}_{s c}}{\boldsymbol{z}_{s c}^{\top} \boldsymbol{D} \boldsymbol{z}_{s c}} \mathbf{1}_{S}^{\top} \boldsymbol{D} \mathbf{1}_{S}\right] \leq 0 .} .\right.
\end{aligned}
$$

Now, we can apply the standard probabilistic method, and know there exists an S^{*} such that

$$
\mathbf{1}_{S^{*}}^{\top} \boldsymbol{L} \mathbf{1}_{S^{*}}-\sqrt{2 \cdot \frac{\boldsymbol{z}_{s c}^{\top} \boldsymbol{L} \boldsymbol{z}_{s c}}{\boldsymbol{z}_{s c}^{\top} \boldsymbol{D} \boldsymbol{z}_{s c}}} \mathbf{1}_{S^{*}}^{\top} \boldsymbol{D} \mathbf{1}_{S^{*}} \leq 0,
$$

thus

$$
\frac{\mathbf{1}_{S^{*}}^{\top} \boldsymbol{L} \mathbf{1}_{S^{*}}}{\mathbf{1}_{S^{*}}^{\top} \boldsymbol{D} \mathbf{1}_{S^{*}}} \leq \sqrt{2 \cdot \frac{\boldsymbol{z}_{s c}^{\top} \boldsymbol{L} \boldsymbol{z}_{s c}}{\boldsymbol{z}_{s c}^{\top} \boldsymbol{D} \boldsymbol{z}_{s c}}}
$$

(b) Since X and Y are from the same distribution, according to the definition of expectation, we have

$$
\begin{aligned}
& \mathbb{E}[X]=\sum_{\omega \in \Omega} \mathbb{P}(\omega) X(\omega), \\
& \mathbb{E}[Y]=\sum_{\omega \in \Omega} \mathbb{P}(\omega) Y(\omega) .
\end{aligned}
$$

Then,

$$
\frac{\mathbb{E}[X]}{\mathbb{E}[Y]}=\frac{\sum_{\omega \in \Omega} \mathbb{P}(\omega) X(\omega)}{\sum_{\omega \in \Omega} \mathbb{P}(\omega) Y(\omega)} \geq \min _{\omega \in \Omega} \frac{\mathbb{P}(\omega) X(\omega)}{\mathbb{P}(\omega) Y(\omega)}=\min _{\omega \in \Omega} \frac{X(\omega)}{Y(\omega)}:=\frac{X\left(\omega^{*}\right)}{Y\left(\omega^{*}\right)},
$$

where the inequality comes from $\min _{i} a_{i} / b_{i} \leq \sum_{i} a_{i} / \sum_{i} b_{i}, a_{i}, b_{i} \geq 0$.

