
Advanced Graph Algorithms and Optimization Spring 2023

Spectral Graph Theory

R. Kyng & M. Probst Problem Set 4 — Wednesday, March 15

These exercises will not count toward your grade, but you are encouraged to solve them all. This
exercise sheet contains exercises relating to lectures in Week 4.

To get feedback, you must hand in your solutions by 23:59 on March 23. Both hand-written and
LATEX solutions are acceptable, but we will only attempt to read legible text.

Exercise 1

Bound roughly how long it takes for a lazy random walk with initial distribution p0 = 1a for some
a ∈ V to have ‖pt − π‖∞ ≤ ε (for some parameter ε > 0) for

1. the complete graph Kn over n vertices.

2. the path graph Pn over n vertices.

Hint: Use conductances from the last exercise and apply Cheeger’s inequality.

Exercise 2

Let the graphs below be unweighted and undirected.

1. Calculate the expected hitting time E[H1,n] of the random walk on the path graph Pn starting
in vertex 1 until it reaches vertex n.

2. Calculate the expected hitting time E[Ha,b] for any two vertices a 6= b ∈ V in the complete
graphs Kn+1.

3. The graph consisting of Kn and the path Pn joined at an arbitrary vertex of Kn and the first
vertex on Pn is often called the Lollipop graph Ln,n. Show that there exists a set of vertices
a, b ∈ V (Ln,n), with E[Ha,b] 6= E[Hb,a].

Exercise 3

The bound obtained in Cheeger’s inequality is indeed tight. Prove that:

1. Let G be the graph consisting of two vertices connected by a single edge of unit weight. Prove
that φ(G) = λ2(N )/2 and therefore that the lower bound of Cheeger’s inequality is tight.

2. To show that the line graph proves that the upper bound of Cheeger’s Inequality is asymp-
totically tight (i.e. up to constant factors).
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Exercise 4

Sparse Expanders: In random graph theory, the graph over n vertices where each edge between
two endpoints is present independently with probability p is denoted G(n, p).

Show that for p = Ω(log n/n), that G(n, p) is a Ω(1)-expander with high probability (it is up to
you to fix large constants). Take the following steps:

1. Prove that with high probability, d(u) = Θ(pn) for all vertices u ∈ V (G(n, p)).

2. For each set S of k ≤ n/2 vertices, argue that

P[|E(S, V \ S)| = Θ(kpn)] > 1− n−c·k

for any large constant c > 0.

3. Observe that there are at most
(
n
k

)
sets of vertices S of size k. Conclude that G(n, p) is with

high probability a Ω(1)-expander.

Exercise 5

Let G = (V,E) be a connected, undirected graph. In this problem, you will show that there
is an algorithm that computes a φ-expander decomposition X1, X2, . . . , Xk for G of quality
q = O(φ−1/2 · log n) in time O(m logc n) for some constant c. We let N denote the normalized
Laplacian in this exercise, defined by N = D−1/2LD−1/2. Assume that you are given an algorithm
CertifyOrCut(G,φ) that given a graph G and a parameter φ either:

• Certifies that G is a φ-expander, or

• Presents a cut S such that φ(S) = O(
√
φ).

The algorithm CertifyOrCut(G,φ) runs in time O(m logc
′
n) for c′ > 0.

1. Show that there is an algorithm that uses CertifyOrCut(G,φ) and computes a φ-expander
decomposition of quality O(φ−1/2 · log n) in time O(mn · logc

′
n).

2. Show that in O(mn · logc
′
n) time, you can implement a procedure

CertifyOrLargeCut(G,φ) that outputs a set S (possibly empty) with φ(S) = O(
√
φ)

such that either

• G[V \ S] is a φ-expander and volG(V \ S) ≥ 1
3m, or

• min{volG(S), volG(V \ S)} ≥ 1
3m.

Comment: You may use the following claim.

Claim: Given a set S ⊆ V of conductance φG(S) ≤ φ and a set S′ ⊆ V \ S in G[V \ S] with
conductance φG[V \S](S

′) ≤ φ such that volG(S ∪ S′) ≤ volG(V )/2, then φG(S ∪ S′) ≤ φ.

3. (BONUS) Using a local version of random walks and heavy randomization, it turns out
that CertifyOrLargeCut(G,φ) can be implemented in O(m logc

′′
n) time1. Show that

this implies an O(m logc
′′+1 n) time algorithm to compute a φ-expander decomposition.

1Note that this is slightly idealized for ease of presentation.
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