
Advanced Graph Algorithms and Optimization Spring 2023

Spectral Graph Theory

R. Kyng & M. Probst Problem Set 4 — Tuesday, March 15

These exercises will not count toward your grade, but you are encouraged to solve them all. This
exercise sheet contains exercises relating to lectures in Week 4. We encourage you to start the
exercises early so you have time to get through everything.

To get feedback, you must hand in your solutions by 23:59 on March 23. Both hand-written and
LATEX solutions are acceptable, but we will only attempt to read legible text.

Exercise 1

Bound roughly how long it takes for a lazy random walk with initial distribution p0 to have
∥pt − π∥∞ ≤ ϵ (for some parameter ϵ > 0) for

1. the complete graph Kn over n vertices.

2. the path graph Pn over n vertices.

Hint: Use conductances from the last exercise and apply Cheeger’s inequality.

Solution

Recall Theorem 6.2.5 in the lecture notes, that for any p0, at any time step t, we have for pt = W̃
t
p0

that
∥pt − π∥∞ ≤ e−ν2·t/2√n.

To have ∥pt − π∥∞ ≤ ϵ, we need

t ≥ 2

ν2
log

√
n

ϵ
. (1)

Hence, ν2 needs to be estimated to bound the time steps.

1. From the previous exercise, we know ϕ(Kn) ≈ 1
2 . Using Cheeger’s inequality, we have ν2

2 ≤
ϕ(Kn) ≤

√
2ν2, hence ν2 = Θ(1). Plugging in Eq. 1, we obtain t = O(log(n/ϵ)).

2. From the previous exercise, we know ϕ(Pn) ≈ 1
n . Cheeger’s inequality gives a crude estimate

of ϕ(Pn) ≈ 1/n ≤
√
2ν2, which implies that ν2 ≥ 2/n2. We therefore have that t must be set

to t = O(n2 log(n/ϵ)) to ensure ϵ-convergence.

Exercise 2

Let the graphs below be unweighted and undirected.

1

1. Calculate the expected hitting time E[H1,n] of the random walk on the path graph Pn starting
in vertex 1 until it reaches vertex n.

2. Calculate the expected hitting time E[Ha,b] for any two vertices a ̸= b ∈ V in the complete
graphs Kn+1.

3. The graph consisting of Kn and the path Pn joined at an arbitrary vertex of Kn and the first
vertex on Pn is often called the Lollipop graph Ln,n. Show that there exists a set of vertices
a, b ∈ V (Ln,n), with E[Ha,b] ̸= E[Hb,a].

Solution

1. We have b = d − ∥d∥11n = (1, 2, ..., 2, 3− 2n)T and

L = D −A =

1 −1 0 . . . 0
−1 2 −1

0 −1 2
. . .

...
. . .

. . . −1
−1 2 −1

0 −1 1

.

We solve for Lh = b and are interested in h(1). Directly calculating we obtain

h(1) = h(2) + 1

= 2h(3)− h(4) + 1− 2

= 3h(4)− 2h(5) + 1− 2− 4

= (n− 2)h(n− 1)− (n− 1)h(n) + 1− 2

n−3∑
i=1

i

= (n− 2)h(n− 1)− (n− 1)h(n) + 1− (n− 2)(n− 3)

where we used h(i) = 2h(i+1)−h(i+2)−2 for i = 2, ..., n−1. We know h(n) = 0, since that
is where our random walk starts, and thus h(n − 1) = 2n − 3. Putting everything together
we have

h(1) = (n− 2)(2n− 3)− (n− 1)0 + 1− (n− 2)(n− 3)

= n2 − 2n+ 1 = (n− 1)2.

2. The clique has n+ 1 vertices. It is clear that, since we select b with probability 1/n in each
step, it should be n. In the following we show that this using the techniques developed in the
lecture. As in the previous exercise, we compute b = n1−n(n+1)1n and L = (n+1)I−11T .
Where, without any loss of generality, we set n+1 as our source, and observe that h(n+1) = 0,
and h(a) = h(b) for a, b ̸= n+ 1 because of symmetry. We have

nh(a)− (n− 1)h(a) = n

and conclude h(a) = n.

2

https://en.wikipedia.org/wiki/Lollipop_graph

3. A very simple solution to the problem at hand is to just pick the first two vertices on the
path (handle of the lollipop). Then the hitting time E [Ha,b] = 1 deterministically, whereas
E [Hb,a] > 1. A slightly more complex solution is to pick a and b at opposite sides of the
path. Then E [Ha,b] = (n − 1)2 by the first part of this exercise. In the following, we drop
the expectation for readability, while we compute the other direction. We can collapse the
clique into a single vertex −1 and partition

H1,n = H1,2 +H2,3 + ...+Hn,n−1.

We first compute H1,2 from

H1,2 =
1

n
+

n− 1

n
(H1,2 + n− 1)

H1,2 = 1 + (n− 1)2

where we used the fact that the walk goes towards vertex −1 with probability n−1
n as well as

the second part of this exercise. Similarly we have

H2,3 =
1

2
+

1

2
(H1,2 +H2,3 + 1)

H2,3 = 2 +H1,2

and

H3,4 =
1

2
+

1

2
(H2,3 +H3,4 + 1)

H3,4 = 2 +H2,3.

If we follow this recipe to the end, we see that

H i,i+1 = 2i+ (n− 1)2.

Summing up, this yields an asymptotic hitting time of Θ(n3), which is larger than the other
direction by a clean factor of n.

Exercise 3

The bound obtained in Cheeger’s inequality is indeed tight. Prove that:

1. Let G be the graph consisting of two vertices connected by a single edge of unit weight. Prove
that ϕ(G) = λ2(N)/2 and therefore that the lower bound of Cheeger’s inequality is tight.

2. To show that the line graph proves that the upper bound of Cheeger’s Inequality is asymp-
totically tight (i.e. up to constant factors).

Solution

1. To prove the tightness of lower bound, consider the graph G of two vertices connected by
a single edge. It is easy to compute that ϕ(G) = 1, where only one partition of vertices is
possible. We now compute λ2(N).

D =

[
1 0
0 1

]
, A =

[
0 1
1 0

]
, L =

[
1 −1
−1 1

]
.

3

Since Tr(L) = λ1(L) + λ2(L) = 2, we have λ2(L) = 2− 0 = 2.

λ2(N) = λ2(D
− 1

2LD− 1
2) = λ2(L) = 2.

Therefore, we have shown that ϕ(G) = λ2(N)/2 = 1 and therefore, the lower bound of
Cheeger’s inequality is tight.

2. To prove the tightness of upper bound asymptotically, consider the path graph Pn. It is
known that ϕ(Pn) = Θ

(
1
n

)
from Exercise 1. Now, we compute λ2(N). We use the test vector

x for the second eigenvalue of N , where x (i) = (n + 1) − 2i, i ∈ [n]. This vector satisfies
x ⊥ d since d(i) = 2 for all i except d(1) = d(n) = 1. By Courant-Fischer, we have

λ2(N) = min
z⊥d ,z ̸=0

z⊤Lz

z⊤Dz
≤ x⊤Lx

x⊤Dx
=

∑
i∈[n−1](x (i)− x (i+ 1))2∑

i∈[n] d(i)x (i)
2

=

∑
i∈[n−1] 2

2

2
(∑

i∈[n](n+ 1− 2i)2 − (n− 1)2
)

=
4(n− 1)

2[(n+ 1)n(n− 1)/3− (n− 1)2]

=Θ

(
1

n2

)
.

Thus, we can prove that the upper bound is asympototically tight by obtaining

Θ

(
1

n

)
= ϕ(Pn) ≤

√
2λ2(N) ≤

√
2Θ

(
1

n2

)
= Θ

(
1

n

)
.

Exercise 4

Sparse Expanders: In random graph theory, the graph over n vertices where each edge between
two endpoints is present independently with probability p is denoted G(n, p).

Show that for p = Ω(log n/n), that G(n, p) is a Ω(1)-expander with high probability (it is up to
you to fix large constants). Take the following steps:

1. Prove that with high probability, d(u) = Θ(pn) for all vertices u ∈ V (G(n, p)).

2. For each set S of k ≤ n/2 vertices, argue that

P[|E(S, V \ S)| = Θ(kpn)] > 1− n−c·k

for any large constant c > 0.

3. Observe that there are at most
(
n
k

)
sets of vertices S of size k. Conclude that G(n, p) is with

high probability a Ω(1)-expander.

4

Solution

1. For any vertex in u ∈ V , Xi is a Bernoulli random variable s.t.

Xi =

{
1 if u is connected to vi ∈ V \ u, i ∈ [n− 1]
0 o.w.

where P(Xi = 1) = p = Ω(log n/n). Also, X =
∑

i∈[n−1]Xi = d(u) is a variable denoting the
degree of u, then we have

E[X] = (n− 1)p = Θ(np).

By Chernoff bound, choosing p = Θ
(
logn
ϵ2n

)
with ϵ ∈ (0, 1) being a constant, we have

P [|X − E[X]| ≥ ϵE[X]] ≤ 2e−
1
3
ϵ2E[X]

= 2e−
1
3
ϵ2Θ(np)

= 2e−Θ(logn) = 2n−c

for some large constant c > 0. Therefore, we have proved that d(u) ∈
[(1− ϵ)E[X], (1 + ϵ)E[X]] = Θ(pn) with probability larger than 1 − 2n−c. Then, we use
union bound over all n vertices, and we have that for all vertices u ∈ V , d(u) = Θ(pn) with
probability larger than 1− 2n1−c := 1− 2n−c′ , for some large constant c′ > 0.

2. For any set S with k = |S| ≤ n/2, Yi is a Bernoulli random variable s.t.

Yi =

{
1 if edge i is sample, which has exactly one endpoint in S
0 o.w.

where P(Yi = 1) = p = Ω(log n/n). Also, Y =
∑

i∈[k(n−k)] Yi = E(S, V \ S)| is a variable
denoting the number of cut edges S, then we have

E[Y] = k(n− k)p = Θ(kpn).

By Chernoff bound, also choosing p = Θ
(
logn
ϵ2n

)
with ϵ ∈ (0, 1) being a constant, we have

P [|Y − E[Y]| ≥ ϵE[Y]] ≤ 2e−
1
3
ϵ2E[Y]

= 2e−
1
3
ϵ2Θ(kpn)

= 2e−Θ(k logn) = 2n−ck

for some large constant c > 0. Therefore, we have proved that for some set S ⊂ V , |E(S, V \
S)| ∈ [(1− ϵ)E[Y], (1 + ϵ)E[Y]] = Θ(kpn) with probability larger than 1− 2n−ck.

3. For any k ≤ n/2, there are at most
(
n
k

)
= Θ(nk) set of vertices S. We first use union bound

over these sets with size k. Then for all S of size k, |E(S, V \ S)| = Θ(kpn) with probability
larger than 1 − 2n(1−c)k := 1 − 2n−c′k. Then, we using union bound again over all possible
k ≤ n/2, ∫ n/2

k=1
2n−c′kk = − 2nc′k

c′ lnn

∣∣∣∣∣
n/2

k=1

≤ O(n1−c′).

5

Therefore, we can conclude that for all set S with all k ≤ n/2, |E(S, V \ S)| = Θ(kpn) with
probability larger than 1 − n(1−c′) := 1 − n−c′′ , for some large constant c′′ > 0. Hence, with
high probability, we have

ϕ(G(n, p)) = min
∅⊂S⊂V,|S|≤n/2

|E(S, V \ S)|
vol(S)

≤ Θ(kpn)

kΘ(pn)
= Θ(1),

thus G(n, p) is a Ω(1)-expander with high probability.

Exercise 5

Let G = (V,E) be a connected, undirected graph. In this problem, you will show that there
is an algorithm that computes a ϕ-expander decomposition X1, X2, . . . , Xk for G of quality q =
O(ϕ−1/2 · log n) in time O(m logc n) for some constant c. We let N denote the normalized Laplacian
in this exercise, defined by N = D−1/2LD−1/2.

Assume that you are given an algorithm CertifyOrCut(G,ϕ) that given a graph G and a pa-
rameter ϕ either:

• Certifies that G is a ϕ-expander, or

• Presents a cut S such that ϕ(S) = O(
√
ϕ).

The algorithm CertifyOrCut(G,ϕ) runs in time O(m logc
′
n) for c′ > 0.

1. Show that there is an algorithm that uses CertifyOrCut(G,ϕ) and computes a ϕ-expander
decomposition of quality O(ϕ−1/2 · log n) in time O(mn · logc′ n).

2. Show that in O(mn · logc
′
n) time, you can implement a procedure

CertifyOrLargeCut(G,ϕ) that outputs a set S (possibly empty) with ϕ(S) = O(
√
ϕ)

such that either

• G[V \ S] is a ϕ-expander and volG(V \ S) ≥ 1
3m, or

• min{volG(S), volG(V \ S)} ≥ 1
3m.

Comment: You may use the following statement.

Claim: Given a set S ⊆ V of conductance ϕG(S) ≤ ϕ and a set S′ ⊆ V \ S in G[V \ S] with
conductance ϕG[V \S](S

′) ≤ ϕ, you have that ϕG(S ∪ S′) ≤ ϕ.

3. Using a local version of random walks and heavy randomization, it turns out that
CertifyOrLargeCut(G,ϕ) can be implemented in O(m logc

′′
n) time1. Show that this

implies an O(m logc
′′+1 n) time algorithm to compute a ϕ-expander decomposition.

1Note that this is slightly idealized for ease of presentation.

6

Solution.

1. We repeatedly apply CertifyOrCut(G,ϕ) to different induced subgraphs, containing fewer
and fewer vertices. Our algorithm can be seen as a sequence of l steps, where we obtain a
partition Xi,1, Xi,1, ..., Xi,ki of X for each step i ≤ l. For each such set of vertices we also
keep a Boolean variable, that marks the set either as finished, or not.

Initially, we set X0,1 = X, a completely trivial decomposition, and mark it as not finished.
Then, during step i of the algorithm, we apply CertifyOrCut(G[Xi−1,j], ϕ) for each 1 ≤
j ≤ ki−1 such that Xi−1,j that is not marked as finished. If the algorithm returns a cut
S,Xi−1,j \S, we add S and Xi−1,j \S as two separate sets to the partition of step i and mark
them as not finished, otherwise we just add Xi−1,j \ S and mark it as finished. Finally we
include all the finished sets from the previous step in the partition of step i. The algorithm
terminates once all sets of a step are finished.

We start by showing that this algorithm meets the runtime requirements. Let G[Xi−1,j] =
(Vi−1,j , Ei−1,j) and consider a specific step i. We call |Vi−1,j | = nj and Ei−1,j = mj . Then
the computational cost of this step is upper bounded by

ki−1∑
j=1

O(mj log
c′ nj) ≤ O(m logc

′
n).

Since the size of each unfinished set decreases by at least 1 in each step, the total number of
steps is bounded by n. We conclude the total runtime of

O(nm logc
′
n)

as desired.

It is clear that the resulting partition of this algorithm will be a ϕ-expander decomposition,
since all the sets in the final partition are marked as finished. It remains to be shown that we
have at most O(log n

√
ϕm) edges going across components. We will show this by induction

on the number of edges in a graph. Our induction hypothesis goes as follows: Our algorithm
splits a graph with m′ edges and n′ vertices into components, such that at most

c log(m′ + 1)
√

ϕm′

edges go across. For singleton vertices this clearly holds. Consider some other value m′.
Either our algorithm initially splits the graph into two components, or we are done. If it
splits it in two components, with m′

1 and m′
2 edges respectively, we have that the number of

edges that go across components is bound by

c log(m′
1 + 1)

√
ϕm′

1 + c log(m′
2 + 1)

√
ϕm′

2 + cm′
2

√
ϕ ≤ c log(m′ + 1)

√
ϕm′

for m′
2 ≤ m′

1since G is connected. The result follows by induction and m ≤ n2.

2. We start by proving the claim.

Claim: Prove that given a set S ⊆ V of conductance ϕG(S) ≤ ϕ and a set S′ ⊆ V \ S in
G[V \ S] with conductance ϕG[V \S](S

′) ≤ ϕ, you have that ϕG(S ∪ S′) ≤ ϕ if vol(S ∪ S′) ≤
vol(V \ S ∪ S′).

7

We let S and S′ denote the sides with smaller volume and let vol(S ∪ S′) ≤ vol(V \ S ∪ S′).
We have

|E(S, V \ S)| ≤ ϕmin{vol(S), vol(V \ S)}
≤ ϕvol(S)

and

|EG[V \S](S
′, V \ (S ∪ S′))| ≤ ϕmin{volG[V \S](S

′), volG[V \S](V \ (S ∪ S′))}
≤ ϕvolG[V \S](S

′).

Then we calculate

|E(S ∪ S′, V \ (S ∪ S′))| ≤ |E(S, V \ S)|+ |EG[V \S](S
′, V \ (S ∪ S′))|

≤ ϕ(vol(S) + volG[V \S](S
′))

≤ ϕmin{vol(S ∪ S′), vol(V \ (S ∪ S′))}.

Now that we know this our algorithm works in a very simple way. We call
CertifyOrCut(G,ϕ) on the full graph initially. If it certifies G being a ϕ-expander, we
are done. Otherwise it returns two sets S and V \ S, where we assume S is the one with
smaller volume. If S has volume at least τ = 1/3m we are done. Otherwise, we recurse on
the graph G[V \ S] with τ = τ − |S|. Each recursive call reduces the size of the graph by
at least one vertex, which yields the desired run time. When we terminate, either the total
volume of the set of discarded vertices is 1/3m, or the remaining vertices form a ϕ-expander
with volume 1/3m or more. Consider the sets S1, S2, ... of vertices removed in each recursive
iteration. We inductively apply the hint on these and get that the total size of the cut does
not exceed O(ϕ). We need to be a bit careful the last time we apply the hint, since there the
condition vol(S ∪ S′) ≤ vol(V \ S ∪ S′) might not apply. However, we can replace it with
1
2vol(S ∪ S′) ≤ vol(V \ S ∪ S′) and pay with an increased in conductance by a factor of 2.

3. (BONUS) We use the same algorithm as for the first question, but replace
CertifyOrCut(G,ϕ) with CertifyOrLargeCut(G,ϕ) throughout. Intuitively this
should make the recursive tree have limited depth, since CertifyOrLargeCut(G,ϕ) en-
forces a level of balance. To formally show this is the case, we introduce a potential function.
Consider a partition V =

⋃k
i=1Xi, where all Xi are pairwise disjoint. We define the potential

as

Ψ =

k∑
i=1

log(|E|/|E(G[Xi])|)|E(G[Xi])|+ log |E|γ

where γ denotes the number of edges that go across two sets in the partition. Ini-
tially γ is 0 and we always have Ψ ≤ 3 log(n)m. We intend to show, that each call
to CertifyOrLargeCut(G,ϕ) increases the potential substantially. Consider a call to
CertifyOrLargeCut(G,ϕ). In such a call we take an Xi and split it into two sets Xl and
Xp, or we stop the recursion on this branch. If we split it into two sets, we increase the
potential function by

α = log(|E|/ml)ml + log(|E|/mp)|)mp − log(|E|/mi)mi + log |E|γ′

8

where mj is shorthand for |E(G[Xj])| and γ′ denotes the number of edges going across
the cut. We have 2

3mi ≥ ml ≥ 1
3mi and 2

3mi ≥ mp ≥ 1/3mi by the guarantees of
CertifyOrLargeCut(G,ϕ). Thus we have

α ≥ log(|E|/mi)(ml +mp)− log(2/3)(ml +mp)− log(|E|/mi)mi + log |E|γ′

≥ log(|E|/mi)(ml +mp)− (2/3) log(2/3)mi − log(|E|/mi)mi

≥ (2/3) log(2/3)mi.

Therefore the potential increases by a linear factor in mi, whenever we call
CertifyOrLargeCut(G,ϕ) for a graph with mi edges. The upper bound on the potential
function lets us conclude the resulting runtime.

9

