The exercises for this week will not count toward your grade, but you are highly encouraged to solve them all. This exercise sheet has exercises related to week 5 . We encourage you to start early so you have time to go through everything.

To get feedback, you must hand in your solutions by 23:59 on March 30. Both hand-written and $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ solutions are acceptable, but we will only attempt to read legible text.

Notation

Througout the following exercises, we will use the following notation:

- S^{n} is the set of symmetric real matrices $n \times n$ matrices.
- S_{+}^{n} is the set of positive semi-definite $n \times n$ matrices.
- S_{++}^{n} is the set of positive definite $n \times n$ matrices.

Whenever we say a matrix is positive semi-definite or positive definite, we require it to be real and symmetric.

Exercise 1

1. Show that there exist two matrices $\boldsymbol{A}, \boldsymbol{B} \in S_{++}^{n}$ such that $\boldsymbol{A} \preceq \boldsymbol{B}$ but $\boldsymbol{A}^{2} \npreceq \boldsymbol{B}^{2}$.
2. Let $\boldsymbol{A}, \boldsymbol{B} \in S_{++}^{n}$, and assume $\boldsymbol{A} \preceq \boldsymbol{B}$. Prove that $\boldsymbol{B}^{-1} \preceq \boldsymbol{A}^{-1}$.

Hint: It might help to first prove that for a matrix $\boldsymbol{C} \in \mathbb{R}^{n \times n}$, we have $\boldsymbol{C A} \boldsymbol{C}^{\top} \preceq \boldsymbol{C B} \boldsymbol{C}^{\top}$.

Exercise 2

For a matrix \boldsymbol{Z} to be the pseudoinverse of a symmetric matrix \boldsymbol{M}, you need to show that

1. $Z^{\top}=Z$.
2. $\boldsymbol{Z} \boldsymbol{v}=\mathbf{0}$ for $\boldsymbol{v} \in \operatorname{ker}(\boldsymbol{M})$.
3. $\boldsymbol{M Z} \boldsymbol{V}=\boldsymbol{v}$ for $\boldsymbol{v} \in \operatorname{ker}(\boldsymbol{M})^{\perp}$.

Prove that if \boldsymbol{Z} and \boldsymbol{Y} are both the pseudo-inverse of symmetric matrix \boldsymbol{M}, then $\boldsymbol{Z}=\boldsymbol{Y}$, i.e. the pseudo-inverse is unique.

Exercise 3

Let $\boldsymbol{M}=\boldsymbol{X} \boldsymbol{Y} \boldsymbol{X}^{\top}$ for some $\boldsymbol{X}, \boldsymbol{Y} \in \mathbb{R}^{n \times n}$, where \boldsymbol{X} is invertible and \boldsymbol{M} is symmetric. Furthermore, consider the spectral decomposition of $\boldsymbol{M}=\sum_{i=1}^{n} \lambda_{i} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top}$. Then, we define $\boldsymbol{\Pi}_{\boldsymbol{M}}=$ $\sum_{i, \lambda_{i} \neq 0} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top} . \boldsymbol{\Pi}_{M}$ is the orthogonal projection onto the image of \boldsymbol{M} : It has the property that for $\boldsymbol{v} \in \operatorname{im}(\boldsymbol{M}), \boldsymbol{\Pi}_{M} \boldsymbol{v}=\boldsymbol{v}$ and for $\boldsymbol{v} \in \operatorname{ker}(\boldsymbol{M}), \boldsymbol{\Pi}_{M} \boldsymbol{v}=\mathbf{0}$.

Prove that

$$
\boldsymbol{Z}=\boldsymbol{\Pi}_{\boldsymbol{M}}\left(\boldsymbol{X}^{\top}\right)^{-1} \boldsymbol{Y}^{+} \boldsymbol{X}^{-1} \boldsymbol{\Pi}_{\boldsymbol{M}}
$$

is the pseudoinverse of \boldsymbol{M}.

Exercise 4

Suppose that a weighted graph G is a ϕ-expander, with Laplacian $\boldsymbol{L}=\boldsymbol{D}-\boldsymbol{A}$.

1. Prove that for any $\boldsymbol{z} \perp \mathbf{1}$,

$$
\boldsymbol{z}^{\top} \boldsymbol{L}^{\dagger} \boldsymbol{z} \preceq 2 \phi^{-2} \boldsymbol{z}^{\top} \boldsymbol{D}^{-1} \boldsymbol{z} .
$$

Hint: Use the result from Exercise 3 in Problem Set 5.
2. Use the statement above to give an upper bound on the effective resistance between any two vertices u, v of G.

