
Advanced Graph Algorithms and Optimization Spring 2023

Spectral Graph Theory

R. Kyng & M. Probst Gutenberg Problem Set 5— Wednesday, March 22nd

The exercises for this week will not count toward your grade, but you are highly encouraged to
solve them all. This exercise sheet has exercises related to week 5. We encourage you to start early
so you have time to go through everything.

To get feedback, you must hand in your solutions by 23:59 on March 30. Both hand-written and
LATEX solutions are acceptable, but we will only attempt to read legible text.

Notation

Througout the following exercises, we will use the following notation:

• Sn is the set of symmetric real matrices n× n matrices.

• Sn+ is the set of positive semi-definite n× n matrices.

• Sn++ is the set of positive definite n× n matrices.

Whenever we say a matrix is positive semi-definite or positive definite, we require it to be real and
symmetric.

Exercise 1

1. Show that there exist two matrices A,B ∈ Sn++ such that A � B but A2 � B2.

2. Let A,B ∈ Sn++, and assume A � B . Prove that B−1 � A−1.

Hint: It might help to first prove that for a matrix C ∈ Rn×n, we have CAC> � CBC>.

Solution

1. Suppose that

A :=

[
26 5
5 2

]
and

B :=

[
51 0
0 3

]
.

Consider an arbitrary vector x ∈ R2. Then, we have that

x>Ax = 26x (1)2 + 10x (1)x (2) + 2x (2)2.
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and
x>Bx = 51x (1)2 + 3x (2)2.

Therefore, we get

x>Bx − x>Ax = 25x (1)2 + x (2)2 − 10x (1)x (2) = (5x (1)− x (2))2 ≥ 0

which implies that A � B .

Furthermore, A,B ∈ Sn++ because for any x ∈ R2 \ {0},

x>Ax = 26x (1)2 + 10x (1)x (2) + 2x (2)2 = (5x (1) + x (2))2 + x (1)2 + x (2)2 > 0.

On the other hand, for x =

(
0
1

)
we have x>A2x = 29 and x>B2x = 9 which implies that

A2 � B2.

2. Let A,B ∈ Sn++, and assume that A � B . Let us first prove that for any C ∈ Rn×n,

CAC> � CBC>. (1)

For x ∈ Rn, we let y = C>x . Then, we get

x>
(
CAC> −CBC>

)
x =

(
C>x

)>
(A−B)

(
C>x

)
= y> (A−B)y ≤ 0.

Now, we prove that B−1 � A−1. We know that B−
1
2 exists and 0 ≺ B−

1
2 since 0 ≺ B . By

applying Equation (1), we have

B−
1
2AB−

1
2 � B−

1
2BB−

1
2 = I .

Furthermore, since 0 ≺ A, we get(
B−

1
2AB−

1
2

)−1
= B

1
2A−1B

1
2 � I .

By applying Equation (1) another time, we conclude that

B−
1
2B

1
2A−1B

1
2B−

1
2 � B−

1
2 IB−

1
2 ⇒ A−1 � B−1.

Exercise 2

For a matrix Z to be the pseudoinverse of a symmetric matrix M , you need to show that

1. Z> = Z .

2. Zv = 0 for v ∈ ker(M ).

3. MZv = v for v ∈ ker(M )⊥.

Prove that if Z and Y are both the pseudo-inverse of symmetric matrix M , then Z = Y , i.e. the
pseudo-inverse is unique.
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Solution

Assume Z 6= Y . Then there exists some test vector v , such that (Z −Y )v 6= 0. Let v = v1 + v2

with v1 ∈ ker(M )⊥ and v2 ∈ ker(M ). But then consider

M (Z −Y )v = MZv1 −MYv1 + MZv2 −MYv2 = v1 − v1 = 0

which implies (Z −Y )v ∈ ker(M ). However, this cannot be since im(Z )⊥ = im(Z T )⊥ = ker(Z ) ⊆
ker(M ) and thus im(Z −Y ) ⊥ ker(M ).

Exercise 3

Let M = XYX> for some X ,Y ∈ Rn×n, where X is invertible and M is symmetric. Fur-
thermore, consider the spectral decomposition of M =

∑n
i=1 λiv iv

>
i . Then, we define ΠM =∑

i,λi 6=0 v iv
>
i . ΠM is the orthogonal projection onto the image of M : It has the property that for

v ∈ im(M ), ΠM v = v and for v ∈ ker(M ), ΠM v = 0.

Prove that
Z = ΠM (X>)−1Y +X−1ΠM

is the pseudoinverse of M .

Solution

1. Since (v iv
>
i )> = v iv

>
i , we have that Π>M = ΠM . Furthermore, we observe that (X>)−1 =

(X−1)> and (Y +)> = Y +. Therefore, we get

Z> =
(
ΠM (X>)−1Y +X−1ΠM

)>
= Π>M

(
X−1

)> (
Y +

)>((
X>

)−1)>
Π>M

= ΠM

(
X>

)−1
Y +X−1ΠM

= Z .

2. Consider an arbitrary vector v ∈ ker(M ). We know that ΠM v = 0. Therefore, we have

Zv = ΠM

(
X>

)−1
Y +X−1ΠM v = 0.

3. Let v be an arbitrary vector in ker(M )⊥. We want to prove that MZv = v . We know that
ker(M )⊥ = im(M ). This implies that v = Mz for some vector z . Therefore, it suffices to
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show that MZMz = Mz . We observe that MΠM = ΠMM = M . Thus, we have that

MZMz = (MΠM )
(
X>

)−1
Y +X−1 (ΠMM ) z

= M
(
X>

)−1
Y +X−1Mz

= XYX>
(
X>

)−1
Y +X−1XYX>z

= XYY +YX>z

= XYX>z

= Mz .

Exercise 4

Suppose that a weighted graph G is a φ-expander, with Laplacian L = D −A.

1. Prove that for any z ⊥ 1,
z>L†z � 2φ−2z>D−1z .

Hint: Use the result from Exercise 3 in Problem Set 5.

2. Use the statement above to give an upper bound on the effective resistance between any two
vertices u, v of G.

Solution.

1. Note that the null space of D−1/2LD−1/2 is spanned by D1/21, as 1 spans the null space of
L. Cheeger’s inequality gives that for y⊥D1/21,

y>D−1/2LD−1/2y ≥ 0.5φ2y>y .

We let Q denote the projection orthogonal to D1/21. We can then equivalently write

D−1/2LD−1/2 � 0.5φ2Q.

From this we conclude that,

(D−1/2LD−1/2)† � 2φ−2Q†

as A � B implies A† � B† when A and B have the same null space. Hence by using Exercise
12 from problem set 2 and Q = Q†, we then get

QD1/2L†D1/2Q � 2φ−2Q.

This we can rewrite as for all y⊥D1/21.

y>D1/2L†D1/2y ≤ 2φ−2y>y .

Substituting z = D1/2y changes the constraint to D−1/2z⊥D1/21 i.e. z⊥1. Thus we have
that for all z⊥1.

z>L†z � 2φ−2z>D−1z .
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2. If z = eu − ev, then z ⊥ 1, so

z>L†z ≤ 2φ−2z>D−1z = 2φ−2
(

1

d(u)
+

1

d(v)

)
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