Spectral Graph Theory
R. Kyng \& M. Probst Gutenberg Problem Set 5-Wednesday, March 22nd

The exercises for this week will not count toward your grade, but you are highly encouraged to solve them all. This exercise sheet has exercises related to week 5 . We encourage you to start early so you have time to go through everything.

To get feedback, you must hand in your solutions by 23:59 on March 30. Both hand-written and $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ solutions are acceptable, but we will only attempt to read legible text.

Notation

Througout the following exercises, we will use the following notation:

- S^{n} is the set of symmetric real matrices $n \times n$ matrices.
- S_{+}^{n} is the set of positive semi-definite $n \times n$ matrices.
- S_{++}^{n} is the set of positive definite $n \times n$ matrices.

Whenever we say a matrix is positive semi-definite or positive definite, we require it to be real and symmetric.

Exercise 1

1. Show that there exist two matrices $\boldsymbol{A}, \boldsymbol{B} \in S_{++}^{n}$ such that $\boldsymbol{A} \preceq \boldsymbol{B}$ but $\boldsymbol{A}^{2} \npreceq \boldsymbol{B}^{2}$.
2. Let $\boldsymbol{A}, \boldsymbol{B} \in S_{++}^{n}$, and assume $\boldsymbol{A} \preceq \boldsymbol{B}$. Prove that $\boldsymbol{B}^{-1} \preceq \boldsymbol{A}^{-1}$. Hint: It might help to first prove that for a matrix $\boldsymbol{C} \in \mathbb{R}^{n \times n}$, we have $\boldsymbol{C A} \boldsymbol{C}^{\top} \preceq \boldsymbol{C B} \boldsymbol{C}^{\top}$.

Solution

1. Suppose that

$$
\boldsymbol{A}:=\left[\begin{array}{cc}
26 & 5 \\
5 & 2
\end{array}\right]
$$

and

$$
\boldsymbol{B}:=\left[\begin{array}{cc}
51 & 0 \\
0 & 3
\end{array}\right] .
$$

Consider an arbitrary vector $\boldsymbol{x} \in \mathbb{R}^{2}$. Then, we have that

$$
\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}=26 \boldsymbol{x}(1)^{2}+10 \boldsymbol{x}(1) \boldsymbol{x}(2)+2 \boldsymbol{x}(2)^{2} .
$$

and

$$
\boldsymbol{x}^{\top} \boldsymbol{B} \boldsymbol{x}=51 \boldsymbol{x}(1)^{2}+3 \boldsymbol{x}(2)^{2} .
$$

Therefore, we get

$$
\boldsymbol{x}^{\top} \boldsymbol{B} \boldsymbol{x}-\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}=25 \boldsymbol{x}(1)^{2}+\boldsymbol{x}(2)^{2}-10 \boldsymbol{x}(1) \boldsymbol{x}(2)=(5 \boldsymbol{x}(1)-\boldsymbol{x}(2))^{2} \geq 0
$$

which implies that $\boldsymbol{A} \preceq \boldsymbol{B}$.
Furthermore, $\boldsymbol{A}, \boldsymbol{B} \in S_{++}^{n}$ because for any $\boldsymbol{x} \in \mathbb{R}^{2} \backslash\{\mathbf{0}\}$,

$$
\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}=26 \boldsymbol{x}(1)^{2}+10 \boldsymbol{x}(1) \boldsymbol{x}(2)+2 \boldsymbol{x}(2)^{2}=(5 \boldsymbol{x}(1)+\boldsymbol{x}(2))^{2}+\boldsymbol{x}(1)^{2}+\boldsymbol{x}(2)^{2}>0 .
$$

On the other hand, for $\boldsymbol{x}=\binom{0}{1}$ we have $\boldsymbol{x}^{\top} \boldsymbol{A}^{2} \boldsymbol{x}=29$ and $\boldsymbol{x}^{\top} \boldsymbol{B}^{2} \boldsymbol{x}=9$ which implies that $\boldsymbol{A}^{2} \npreceq \boldsymbol{B}^{2}$.
2. Let $\boldsymbol{A}, \boldsymbol{B} \in S_{++}^{n}$, and assume that $\boldsymbol{A} \preceq \boldsymbol{B}$. Let us first prove that for any $\boldsymbol{C} \in \mathbb{R}^{n \times n}$,

$$
\begin{equation*}
C A C^{\top} \preceq C B C^{\top} \tag{1}
\end{equation*}
$$

For $\boldsymbol{x} \in \mathbb{R}^{n}$, we let $\boldsymbol{y}=\boldsymbol{C}^{\top} \boldsymbol{x}$. Then, we get

$$
\boldsymbol{x}^{\top}\left(\boldsymbol{C A} \boldsymbol{C}^{\top}-\boldsymbol{C B} \boldsymbol{C}^{\top}\right) \boldsymbol{x}=\left(\boldsymbol{C}^{\top} \boldsymbol{x}\right)^{\top}(\boldsymbol{A}-\boldsymbol{B})\left(\boldsymbol{C}^{\top} \boldsymbol{x}\right)=\boldsymbol{y}^{\top}(\boldsymbol{A}-\boldsymbol{B}) \boldsymbol{y} \leq 0
$$

Now, we prove that $\boldsymbol{B}^{-1} \preceq \boldsymbol{A}^{-1}$. We know that $\boldsymbol{B}^{-\frac{1}{2}}$ exists and $\mathbf{0} \prec \boldsymbol{B}^{-\frac{1}{2}}$ since $\mathbf{0} \prec \boldsymbol{B}$. By applying Equation (1), we have

$$
\boldsymbol{B}^{-\frac{1}{2}} \boldsymbol{A} \boldsymbol{B}^{-\frac{1}{2}} \preceq \boldsymbol{B}^{-\frac{1}{2}} \boldsymbol{B} \boldsymbol{B}^{-\frac{1}{2}}=\boldsymbol{I} .
$$

Furthermore, since $\mathbf{0} \prec \boldsymbol{A}$, we get

$$
\left(\boldsymbol{B}^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right)^{-1}=\boldsymbol{B}^{\frac{1}{2}} A^{-1} \boldsymbol{B}^{\frac{1}{2}} \succeq \boldsymbol{I}
$$

By applying Equation (1) another time, we conclude that

$$
\boldsymbol{B}^{-\frac{1}{2}} \boldsymbol{B}^{\frac{1}{2}} \boldsymbol{A}^{-1} \boldsymbol{B}^{\frac{1}{2}} \boldsymbol{B}^{-\frac{1}{2}} \succeq \boldsymbol{B}^{-\frac{1}{2}} \boldsymbol{I} \boldsymbol{B}^{-\frac{1}{2}} \Rightarrow \boldsymbol{A}^{-1} \succeq \boldsymbol{B}^{-1}
$$

Exercise 2

For a matrix \boldsymbol{Z} to be the pseudoinverse of a symmetric matrix \boldsymbol{M}, you need to show that

1. $Z^{\top}=Z$.
2. $\boldsymbol{Z} \boldsymbol{v}=\mathbf{0}$ for $\boldsymbol{v} \in \operatorname{ker}(\boldsymbol{M})$.
3. $\boldsymbol{M} \boldsymbol{Z} \boldsymbol{v}=\boldsymbol{v}$ for $\boldsymbol{v} \in \operatorname{ker}(\boldsymbol{M})^{\perp}$.

Prove that if \boldsymbol{Z} and \boldsymbol{Y} are both the pseudo-inverse of symmetric matrix \boldsymbol{M}, then $\boldsymbol{Z}=\boldsymbol{Y}$, i.e. the pseudo-inverse is unique.

Solution

Assume $\boldsymbol{Z} \neq \boldsymbol{Y}$. Then there exists some test vector \boldsymbol{v}, such that $(\boldsymbol{Z}-\boldsymbol{Y}) \boldsymbol{v} \neq \mathbf{0}$. Let $\boldsymbol{v}=\boldsymbol{v}_{1}+\boldsymbol{v}_{2}$ with $\boldsymbol{v}_{1} \in \operatorname{ker}(\boldsymbol{M})^{\perp}$ and $\boldsymbol{v}_{2} \in \operatorname{ker}(\boldsymbol{M})$. But then consider

$$
\boldsymbol{M}(\boldsymbol{Z}-\boldsymbol{Y}) \boldsymbol{v}=\boldsymbol{M} \boldsymbol{Z} \boldsymbol{v}_{1}-\boldsymbol{M} \boldsymbol{Y} \boldsymbol{v}_{1}+\boldsymbol{M} \boldsymbol{Z} \boldsymbol{v}_{2}-\boldsymbol{M} \boldsymbol{Y} \boldsymbol{v}_{2}=\boldsymbol{v}_{1}-\boldsymbol{v}_{1}=\mathbf{0}
$$

which implies $(\boldsymbol{Z}-\boldsymbol{Y}) \boldsymbol{v} \in \operatorname{ker}(\boldsymbol{M})$. However, this cannot be since $\operatorname{im}(\boldsymbol{Z})^{\perp}=\operatorname{im}\left(\boldsymbol{Z}^{T}\right)^{\perp}=\operatorname{ker}(\boldsymbol{Z}) \subseteq$ $\operatorname{ker}(\boldsymbol{M})$ and thus $\operatorname{im}(\boldsymbol{Z}-\boldsymbol{Y}) \perp \operatorname{ker}(\boldsymbol{M})$.

Exercise 3

Let $\boldsymbol{M}=\boldsymbol{X} \boldsymbol{Y} \boldsymbol{X}^{\top}$ for some $\boldsymbol{X}, \boldsymbol{Y} \in \mathbb{R}^{n \times n}$, where \boldsymbol{X} is invertible and \boldsymbol{M} is symmetric. Furthermore, consider the spectral decomposition of $\boldsymbol{M}=\sum_{i=1}^{n} \lambda_{i} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top}$. Then, we define $\boldsymbol{\Pi}_{\boldsymbol{M}}=$ $\sum_{i, \lambda_{i} \neq 0} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top} . \Pi_{M}$ is the orthogonal projection onto the image of \boldsymbol{M} : It has the property that for $\boldsymbol{v} \in \operatorname{im}(\boldsymbol{M}), \boldsymbol{\Pi}_{\boldsymbol{M}} \boldsymbol{v}=\boldsymbol{v}$ and for $\boldsymbol{v} \in \operatorname{ker}(\boldsymbol{M}), \boldsymbol{\Pi}_{M} \boldsymbol{v}=\mathbf{0}$.

Prove that

$$
\boldsymbol{Z}=\boldsymbol{\Pi}_{\boldsymbol{M}}\left(\boldsymbol{X}^{\top}\right)^{-1} \boldsymbol{Y}^{+} \boldsymbol{X}^{-1} \boldsymbol{\Pi}_{M}
$$

is the pseudoinverse of \boldsymbol{M}.

Solution

1. Since $\left(\boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top}\right)^{\top}=\boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top}$, we have that $\boldsymbol{\Pi}_{M}^{\top}=\boldsymbol{\Pi}_{M}$. Furthermore, we observe that $\left(\boldsymbol{X}^{\top}\right)^{-1}=$ $\left(\boldsymbol{X}^{-1}\right)^{\top}$ and $\left(\boldsymbol{Y}^{+}\right)^{\top}=\boldsymbol{Y}^{+}$. Therefore, we get

$$
\begin{aligned}
\boldsymbol{Z}^{\top} & =\left(\boldsymbol{\Pi}_{\boldsymbol{M}}\left(\boldsymbol{X}^{\top}\right)^{-1} \boldsymbol{Y}^{+} \boldsymbol{X}^{-1} \boldsymbol{\Pi}_{\boldsymbol{M}}\right)^{\top} \\
& =\boldsymbol{\Pi}_{\boldsymbol{M}}^{\top}\left(\boldsymbol{X}^{-1}\right)^{\top}\left(\boldsymbol{Y}^{+}\right)^{\top}\left(\left(\boldsymbol{X}^{\top}\right)^{-1}\right)^{\top} \boldsymbol{\Pi}_{\boldsymbol{M}}^{\top} \\
& =\boldsymbol{\Pi}_{M}\left(\boldsymbol{X}^{\top}\right)^{-1} \boldsymbol{Y}^{+} \boldsymbol{X}^{-1} \boldsymbol{\Pi}_{\boldsymbol{M}} \\
& =\boldsymbol{Z}
\end{aligned}
$$

2. Consider an arbitrary vector $\boldsymbol{v} \in \operatorname{ker}(\boldsymbol{M})$. We know that $\boldsymbol{\Pi}_{\boldsymbol{M}} \boldsymbol{v}=\mathbf{0}$. Therefore, we have

$$
\boldsymbol{Z} \boldsymbol{v}=\boldsymbol{\Pi}_{M}\left(\boldsymbol{X}^{\top}\right)^{-1} \boldsymbol{Y}^{+} \boldsymbol{X}^{-1} \boldsymbol{\Pi}_{M} \boldsymbol{v}=\mathbf{0}
$$

3. Let \boldsymbol{v} be an arbitrary vector in $\operatorname{ker}(\boldsymbol{M})^{\perp}$. We want to prove that $\boldsymbol{M} \boldsymbol{Z} \boldsymbol{v}=\boldsymbol{v}$. We know that $\operatorname{ker}(\boldsymbol{M})^{\perp}=\operatorname{im}(\boldsymbol{M})$. This implies that $\boldsymbol{v}=\boldsymbol{M} \boldsymbol{z}$ for some vector \boldsymbol{z}. Therefore, it suffices to
show that $\boldsymbol{M Z M z}=\boldsymbol{M z}$. We observe that $\boldsymbol{M} \boldsymbol{\Pi}_{\boldsymbol{M}}=\boldsymbol{\Pi}_{\boldsymbol{M}} \boldsymbol{M}=\boldsymbol{M}$. Thus, we have that

$$
\begin{aligned}
M Z M \boldsymbol{z} & =\left(\boldsymbol{M} \boldsymbol{\Pi}_{M}\right)\left(\boldsymbol{X}^{\top}\right)^{-1} \boldsymbol{Y}^{+} \boldsymbol{X}^{-1}\left(\boldsymbol{\Pi}_{M} \boldsymbol{M}\right) \boldsymbol{z} \\
& =\boldsymbol{M}\left(\boldsymbol{X}^{\top}\right)^{-1} \boldsymbol{Y}^{+} \boldsymbol{X}^{-1} \boldsymbol{M} \boldsymbol{z} \\
& =\boldsymbol{X} \boldsymbol{Y} \boldsymbol{X}^{\top}\left(\boldsymbol{X}^{\top}\right)^{-1} \boldsymbol{Y}^{+} \boldsymbol{X}^{-1} \boldsymbol{X} \boldsymbol{Y} \boldsymbol{X}^{\top} \boldsymbol{z} \\
& =\boldsymbol{X} \boldsymbol{Y} \boldsymbol{Y}^{+} \boldsymbol{Y} \boldsymbol{X}^{\top} \boldsymbol{z} \\
& =\boldsymbol{X} \boldsymbol{Y} \boldsymbol{X}^{\top} \boldsymbol{z} \\
& =\boldsymbol{M} \boldsymbol{z}
\end{aligned}
$$

Exercise 4

Suppose that a weighted graph G is a ϕ-expander, with Laplacian $\boldsymbol{L}=\boldsymbol{D}-\boldsymbol{A}$.

1. Prove that for any $\boldsymbol{z} \perp \mathbf{1}$,

$$
\boldsymbol{z}^{\top} \boldsymbol{L}^{\dagger} \boldsymbol{z} \preceq 2 \phi^{-2} \boldsymbol{z}^{\top} \boldsymbol{D}^{-1} \boldsymbol{z} .
$$

Hint: Use the result from Exercise 3 in Problem Set 5.
2. Use the statement above to give an upper bound on the effective resistance between any two vertices u, v of G.

Solution.

1. Note that the null space of $\boldsymbol{D}^{-1 / 2} \boldsymbol{L} \boldsymbol{D}^{-1 / 2}$ is spanned by $\boldsymbol{D}^{1 / 2} \mathbf{1}$, as $\mathbf{1}$ spans the null space of \boldsymbol{L}. Cheeger's inequality gives that for $\boldsymbol{y} \perp \boldsymbol{D}^{1 / 2} \mathbf{1}$,

$$
\boldsymbol{y}^{\top} \boldsymbol{D}^{-1 / 2} \boldsymbol{L} \boldsymbol{D}^{-1 / 2} \boldsymbol{y} \geq 0.5 \phi^{2} \boldsymbol{y}^{\top} \boldsymbol{y}
$$

We let \mathbf{Q} denote the projection orthogonal to $\boldsymbol{D}^{1 / 2} \mathbf{1}$. We can then equivalently write

$$
\boldsymbol{D}^{-1 / 2} \boldsymbol{L} \boldsymbol{D}^{-1 / 2} \succeq 0.5 \phi^{2} \mathbf{Q}
$$

From this we conclude that,

$$
\left(\boldsymbol{D}^{-1 / 2} \boldsymbol{L} \boldsymbol{D}^{-1 / 2}\right)^{\dagger} \preceq 2 \phi^{-2} \mathbf{Q}^{\dagger}
$$

as $\boldsymbol{A} \succeq \boldsymbol{B}$ implies $\boldsymbol{A}^{\dagger} \preceq \boldsymbol{B}^{\dagger}$ when \boldsymbol{A} and \boldsymbol{B} have the same null space. Hence by using Exercise 12 from problem set 2 and $\mathbf{Q}=\mathbf{Q}^{\dagger}$, we then get

$$
\mathbf{Q} \boldsymbol{D}^{1 / 2} \boldsymbol{L}^{\dagger} \boldsymbol{D}^{1 / 2} \mathbf{Q} \preceq 2 \phi^{-2} \mathbf{Q} .
$$

This we can rewrite as for all $\boldsymbol{y} \perp \boldsymbol{D}^{1 / 2} \mathbf{1}$.

$$
\boldsymbol{y}^{\top} \boldsymbol{D}^{1 / 2} \boldsymbol{L}^{\dagger} \boldsymbol{D}^{1 / 2} \boldsymbol{y} \leq 2 \phi^{-2} \boldsymbol{y}^{\top} \boldsymbol{y}
$$

Substituting $\boldsymbol{z}=\boldsymbol{D}^{1 / 2} \boldsymbol{y}$ changes the constraint to $\boldsymbol{D}^{-1 / 2} \boldsymbol{z} \perp \boldsymbol{D}^{1 / 2} \mathbf{1}$ i.e. $\boldsymbol{z} \perp \mathbf{1}$. Thus we have that for all $\boldsymbol{z} \perp \mathbf{1}$.

$$
\boldsymbol{z}^{\top} \boldsymbol{L}^{\dagger} \boldsymbol{z} \preceq 2 \phi^{-2} \boldsymbol{z}^{\top} \boldsymbol{D}^{-1} \boldsymbol{z}
$$

2. If $\boldsymbol{z}=\boldsymbol{e}_{u}-\boldsymbol{e}_{v}$, then $\boldsymbol{z} \perp \mathbf{1}$, so

$$
\boldsymbol{z}^{\top} \boldsymbol{L}^{\dagger} \boldsymbol{z} \leq 2 \phi^{-2} \boldsymbol{z}^{\top} \boldsymbol{D}^{-1} \boldsymbol{z}=2 \phi^{-2}\left(\frac{1}{\boldsymbol{d}(u)}+\frac{1}{\boldsymbol{d}(v)}\right)
$$

