
Advanced Graph Algorithms and Optimization Spring 2023

Spectral Graph Theory

R. Kyng & M. Probst Gutenberg Problem Set 6— Wednesday, March 29nd

The exercises for this week will not count toward your grade, but you are highly encouraged to
solve them all. This exercise sheet has exercises related to week 6. We encourage you to start early
so you have time to go through everything.

To get feedback, you must hand in your solutions by 23:59 on April 7. Both hand-written and
LATEX solutions are acceptable, but we will only attempt to read legible text.

Notation

Througout the following exercises, we will use the following notation:

• Sn is the set of symmetric real matrices n× n matrices.

• Sn
+ is the set of positive semi-definite n× n matrices.

• Sn
++ is the set of positive definite n× n matrices.

Whenever we say a matrix is positive semi-definite or positive definite, we require it to be real and
symmetric.

Exercise 1

In this exercise, we want you to complete the proof of Theorem 9.3.3 in Chapter 9. Refer to the
lectures notes for definitions of the terms used here.

1. Prove that Equation (9.4) is satisfied, i.e. that for all edges e ∈ E we have ∥X e∥ ≤ 1
α .

2. Prove that Equation (9.5) is satisfied, i.e. that
∥∥∑

e E
[
X 2

e

]∥∥ ≤ 1
α .

3. Explain how we can use a scalar Chernoff bound to prove that
∣∣∣Ẽ∣∣∣ ≤ O(ϵ−2 log(n/δ)n) with

probability at least 1− δ/2. You may pick any constant that suits you to establish the O(·)
bound.

Solution.

1. We recall that

Y e =

{
w(e)
pe

beb
⊤
e with probability pe

0 otherwise
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for pe = min(1, α
∥∥Φ(w(e)beb

⊤
e )

∥∥) and Φ(A) = L+/2AL+/2. Furthermore, we have X e =
Φ(Y e)− E [Φ(Y e)]. Thus,

X e =

{
( 1
pe

− 1)Φ(w(e)beb
⊤
e ) with probability pe

−Φ(w(e)beb
⊤
e ) otherwise.

Note that when pe = 1, we have X e = 0 always. So we only need to bound the norm when
pe = α

∥∥Φ(w(e)beb
⊤
e )

∥∥. Therefore, we can compute

∥X e∥ ≤ max{ 1

pe
− 1, 1}

∥∥∥Φ(w(e)beb
⊤
e )

∥∥∥ ≤ 1

pe

∥∥∥Φ(w(e)beb
⊤
e )

∥∥∥ =
1

α
.

2. Note that
∑

e E
[
X 2

e

]
⪰ 0, because each term is PSD. So we only need to give an upper bound

to bound the norm. Let us upper-bound E
[
X 2

e

]
. We can focus on pe = α

∥∥Φ(w(e)beb
⊤
e )

∥∥,
because in the other case X e is identically zero. We have that

E
[
X 2

e

]
=

(
1

pe
− 1

)
Φ
(
w (e) beb

⊤
e

)2

⪯
(

1

pe
− 1

)∥∥∥Φ(
w(e)beb

⊤
e

)∥∥∥Φ(
w(e)beb

⊤
e

)
⪯ 1

α
Φ
(
w(e)beb

⊤
e

)
.

Using the fact that ∥Φ(L)∥ ≤ 1, we can conclude∥∥∥∥∥∑
e

E
[
X 2

e

]∥∥∥∥∥ ≤
∥∥∥∥ 1αΦ(L)

∥∥∥∥ ≤ 1

α
.

3. For each edge e, let Bernoulli random variable Ze be 1 with probability pe. Then,
∣∣∣Ẽ∣∣∣ = ∑

e Ze

is the sum of |E| independent Bernoulli random variables. Let us define µ′ = 40ϵ−2n log(n/δ).

We know that E
[∣∣∣Ẽ∣∣∣] ≤ µ′. Therefore, by applying the Chernoff bound we get

Pr
[∣∣∣Ẽ∣∣∣ ≥ 2µ′

]
≤ Pr

[∣∣∣Ẽ∣∣∣ ≥ 2E
[∣∣∣Ẽ∣∣∣]]

≤ exp

−
E
[∣∣∣Ẽ∣∣∣]
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≤ exp

(
−cϵ−2n log(n/δ)

4

)

=

(
δ

n

) cϵ−2n
4

≤ δ

2

where we used that we can lower bound E
[∣∣∣Ẽ∣∣∣] by cϵ−2n log(n/δ) for some constant c > 0.
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Exercise 2

Consider A ∈ Rn×n and v ,u ∈ Rn.

1. Assume that I + uv⊤ is invertible. Determine c such that(
I + uv⊤

)−1
= I − uv⊤

c
.

2. Assume that both A and A+ uv⊤ are invertible. Prove that(
A+ uv⊤

)−1
= A−1 − A−1uv⊤A−1

1 + v⊤A−1u
.

Hint: You might use that (BC )−1 = C−1B−1 for two invertible matrices B ,C ∈ Rn×n.

Solution.

1. We want to find c such that

I =

(
I − uv⊤

c

)(
I + uv⊤

)
.

This is equivalent to

I = I + uv⊤ − uv⊤

c
− uv⊤

c
uv⊤.

Notice that uv⊤uv⊤ = u(v⊤u)v⊤ = (v⊤u)uv⊤. Thus, the above equation holds if and
only if

1− 1

c
− v⊤u

c
= 0.

Therefore, we set c = 1 + v⊤u and conclude hat(
I + uv⊤

)−1
= I − uv⊤

1 + v⊤u
. (1)

2. We have that (
A+ uv⊤

)−1
=

(
A

(
I +A−1uv⊤

))−1
.

By applying the fact that (BC )−1 = C−1B−1 for two invertible matrices B ,C ∈ Rn×n and
then using Equation (1), we get(

A+ uv⊤
)−1

=
(
I +A−1uv⊤

)−1
A−1

=

(
I − A−1uv⊤

1 + v⊤A−1u

)
A−1

= A−1 − A−1uv⊤A−1

1 + v⊤A−1u
.

This equality is known as the Sherman-Morrison formula.
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Exercise 3

Consider a matrix function f : Rn×n → Rn×n. For X ,Y ∈ Rn×n, we define

Df (X ) [Y ] =
∂

∂t

∣∣∣
t=0

f (X + tY ) .

Remark. Note that if we think of X and Y each as a vector of numbers, then this is the (matrix-
valued) directional derivative of f at X in the direction of Y .

Consider f(X ) = X−1 for an invertible matrix X ∈ Rn×n. Prove that

Df(X )[Y ] = −X−1YX−1.

Hint: You might need to use Exercise 3.

Solution.

We can write Y =
∑

i,j Y (i, j)e ie
⊤
j , where e i denotes the vector with a 1 in the i-th coordinate

and 0’s elsewhere. Thus, we have that

Df (X ) [Y ] =
∑
i,j

Df (X )
[
Y (i, j) e ie

⊤
j

]
.

Therefore, if we prove that Df(X )[Y (i, j)e ie
⊤
j ] = −X−1Y (i, j)e ie

⊤
j X

−1 then we can conclude

that Df(X )[Y ] = −X−1YX−1.

We know that

Df (X )
[
Y (i, j) e ie

⊤
j

]
= lim

t→0

(
X + tY (i, j)e ie

⊤
j

)−1
−X−1

t
. (2)

Furthermore, by applying Exercise 3 we get(
X + tY (i, j)e ie

⊤
j

)−1
= X−1 −

X−1tY (i, j)e ie
⊤
j X

−1

1 + tY (i, j)e⊤
j X

−1e i
. (3)

Combining Equations (2) and (3) implies that

Df (X )
[
Y (i, j) e ie

⊤
j

]
= lim

t→0

−X−1Y (i, j)e ie
⊤
j X

−1

1 + tY (i, j)e⊤
j X

−1e i
= −X−1Y (i, j)e ie

⊤
j X

−1.

This finishes the proof.

Exercise 4

1. Consider A ∈ Sn
++ and matrix ∆ ∈ Sn

+. Prove that (A+∆)−1 ⪯ A−1.
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2. Let T be a convex set. We say that a function f : T → Rn×n, is operator convex if for any
two matrices A,B ∈ T and any θ ∈ [0, 1]

f (θX + (1− θ)Y ) ⪯ θf (X ) + (1− θ) f (Y ) .

Prove that f(X ) = X−1 is operator convex over the set T = Sn
++.

Hint: You could first show that operator convexity is implied by the second directional deriva-
tive D2f(X )[Y ,Y ] being positive semi-definite for all Y ∈ Sn and X ∈ Sn

++.

Solution.

1. From Exercise 10 in problem set 2, we know that if A ⪯ B for two matrices A,B ∈ Sn
++,

then B−1 ⪯ A−1. By setting B = A+∆, we can conclude that (A+∆)−1 ⪯ A−1.

Note that by setting ∆ = B −A, we can prove the statement of Exercise 10 from Problem
Set 2. Thus, it would be interesting to provide an alternative proof which does not use this
exercise. We provide such an alternative proof.

We know that

(A+∆)−1 = A−1 +

∫ 1

t=0

d

dt
(A+ t∆)−1 dt.

By applying Exercise 4, we get

(A+∆)−1 = A−1 +

∫ 1

t=0
− (A+ t∆)−1∆ (A+ t∆)−1 dt.

Consider an arbitrary vector x , then we have that

x⊤ (A+∆)−1 x = x⊤A−1x −
∫ 1

t=0
x⊤ (A+ t∆)−1∆ (A+ t∆)−1 x dt.

We observe that x⊤ (A+ t∆)−1∆ (A+ t∆)−1 x ≥ 0. Therefore, we can conclude that

x⊤ (A+∆)−1 x ≤ x⊤A−1x

which implies that (A+∆)−1 ⪯ A−1.

2. First, we will show that D2f(X )[Y ,Y ] being positive semi-definite for all Y ∈ Sn and X ∈
Sn
++ implies operator-convexity. Define for t ∈ [0, 1] a function h(t) = z⊤f(X + t(Y −X ))z

for fixed z ∈ Rn and X ,Y ∈ Sn
++. This is a valid definition since X + t(Y −X ) is in Sn

++

for t ∈ [0, 1]. Observe that:

∂

∂t
h(t) = z⊤Df(X + t(Y −X ))[Y −X ]z

∂2

∂t2
h(t) = z⊤D2f(X + t(Y −X ))[Y −X ,Y −X ]z ≥ 0

The last inequality follows from D2f(X + t(Y −X ))[Y −X ,Y −X ] being positive semi-
definite by assumption. Therefore, we know that h is convex:

z⊤ [θf(X ) + (1− θ)f(Y )] z = θh(0) + (1− θ)h(1) ≥ h(1− θ) = z⊤f(θX + (1− θ)Y )z
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This inequality holds for any z ∈ Rn which proves that f is operator convex.

What is left to show is that D2f(X )[Y ,Y ] is indeed positive semi-definite. Using
Exercise 4:

D2f(X )[Y ,Y ] =
∂2

∂t2

∣∣∣
t=0

f(X + tY )

=
∂

∂t

∣∣∣
t=0

− (X − tY )−1Y (X − tY )−1

= −∂(X − tY )−1

∂t

∣∣∣
t=0

YX−1 −X−1Y
∂(X − tY )−1

∂t

∣∣∣
t=0

= X−1YX−1YX−1 +X−1YX−1YX−1

= 2X−1YX−1YX−1

Remember that X being positive definite implies X−1 being positive definite. Thus, we have
for any x ∈ Rn:

x⊤D2f(X )[Y ,Y ]x = 2x⊤X−1YX−1YX−1x = 2z⊤X−1z ≥ 0

where z = YX−1x . Hence, D2f(X )[Y ,Y ] is positive semi-definite which completes the
proof.
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