Advanced Graph Algorithms and Optimization

```
    (Mostly) Convex Duality
R. Kyng \({ }^{3}\) M. Probst Gutenberg Problem Set 8 - Wednesday, May 3rd
```

The exercises for this week will not count toward your grade, but you are highly encouraged to solve them all. This exercise sheet has exercises related to week 8 . We encourage you to start early so you have time to go through everything.

To get feedback, you must hand in your solutions by 23:59 on May 11. Both hand-written and LATEX solutions are acceptable, but we will only attempt to read legible text.

Exercise 1: Different Duals

Let $G=(V, E)$ be a directed graph with capacities $\boldsymbol{c} \in \mathbb{R}^{E} \geq \mathbf{0}$, and edge-vertex incidence matrix \boldsymbol{B}, and consider a demand vector $\boldsymbol{d} \in \mathbb{R}^{V}$ with $\boldsymbol{d} \perp \mathbf{1}$.
Let us try to minimize $\left\|\boldsymbol{C}^{-1} \boldsymbol{f}\right\|_{\infty}$, where $\boldsymbol{C}=\operatorname{diag}_{e \in E} \boldsymbol{c}(e)$. This leads to an optimization problem

$$
\begin{gathered}
\min _{f \in \mathbb{R} \geq 0}^{E}\left\|\boldsymbol{C}^{-1} \boldsymbol{f}\right\|_{\infty} \\
\text { s.t. } \boldsymbol{B} \boldsymbol{f}=\boldsymbol{d}
\end{gathered}
$$

- Compute the dual of this problem. Note that we encoded the "constraint" $f \geq \mathbf{0}$ in the domain of the variable \boldsymbol{f}. This means that there will not be a dual variable associated with this constraint.
- Does Strong Duality hold for this pair of primal and dual problems?

Consider also a variant of this problem, where we instead treat $\boldsymbol{f} \geq \mathbf{0}$ as an explicit constraint:

$$
\begin{aligned}
\min _{\boldsymbol{f} \in \mathbb{R}^{E}} & \left\|\boldsymbol{C}^{-1} \boldsymbol{f}\right\|_{\infty} \\
\text { s.t. } & \boldsymbol{B} \boldsymbol{f}=\boldsymbol{d} \\
& \boldsymbol{f} \geq \mathbf{0}
\end{aligned}
$$

This problem has a different dual problem because we made $\boldsymbol{f} \geq \mathbf{0}$ an explicit constraint.

- Compute the dual of this variant of the problem.
- Explain how, given an optimal solution to the first dual problem, we can compute an optimal solution to the second dual problem.

Exercise 2: A "Broken" Dual

Consider the following optimization problem

$$
\begin{aligned}
\min _{x \in \mathbb{R}, y \in \mathbb{R}>0} & e^{-x} \\
\text { s.t. } & x^{2} / y \leq 0 .
\end{aligned}
$$

- Compute the dual program.
- What is the optimal value of the primal program? And of the dual program? Does strong duality hold? Does Slater's condition hold?

Exercise 3: Norms and a Lagragian

Suppose $1<q<p<\infty$. In this exercise, we want to prove that for $\boldsymbol{x} \in \mathbb{R}^{n}$, we have

$$
\begin{equation*}
\|\boldsymbol{x}\|_{q} \leq n^{1 / q-1 / p}\|\boldsymbol{x}\|_{p} \tag{1}
\end{equation*}
$$

Consider the following optimization problem:

$$
\max _{x \in \mathbb{R}^{n}:\|\boldsymbol{x}\|_{p}^{p} \leq 1}\|\boldsymbol{x}\|_{q}^{q}
$$

- Is this a convex optimization problem?
- Informally, explain why, at any maximizing \boldsymbol{x} for the above problem, there should exist a $\lambda>0$ such that

$$
\boldsymbol{\nabla}_{x}\left(\|\boldsymbol{x}\|_{q}^{q}-\lambda\|\boldsymbol{x}\|_{p}^{p}\right)=\mathbf{0}
$$

- Use the existence of such a λ to prove Equation (11).

Exercise 4: Flows and Voltages and Other Powers

Consider a connected undirected graph $G=(V, E)$ with resistances $r \in \mathbb{R}^{E}$ and edge-vertex incidence matrix \boldsymbol{B}, and a demand vector $\boldsymbol{d} \in \mathbb{R}^{V}$ with $\boldsymbol{d} \perp \mathbf{1}$.
Given some $p>1$, we'll look at the flow optimization problem

$$
\begin{aligned}
& \min _{\boldsymbol{f} \in \mathbb{R}^{E}} \sum_{e} \boldsymbol{r}(e) \frac{1}{p}|\boldsymbol{f}(e)|^{p} \\
& \text { s.t. } \boldsymbol{B} \boldsymbol{f}=\boldsymbol{d} .
\end{aligned}
$$

- Is the above optimization problem convex?
- Does Slater's condition hold for the problem?
- What is the dual problem for the problem? Define $q>0$ to be the number such that $1=\frac{1}{q}+\frac{1}{p}$. Try to find a clean expression of the dual. Writing the expression in terms of q instead of p will simplify it.

Suppose our instance of the optimization problem as an optimal flow solution \boldsymbol{f}^{*}. Let $\alpha=\sum_{e} \boldsymbol{r}(e) \frac{1}{p}\left|\boldsymbol{f}^{*}(e)\right|^{p}$ be the optimal problem value. Suppose that for some particular edge \hat{e} we have

$$
\gamma=\frac{\boldsymbol{r}(\hat{e}) \frac{1}{p}\left|\boldsymbol{f}^{*}(\hat{e})\right|^{p}}{\alpha} .
$$

Now, consider a modified instance with resistances $\tilde{\boldsymbol{r}} \in \mathbb{R}^{E}$ given by

$$
\tilde{\boldsymbol{r}}(e)= \begin{cases}\boldsymbol{r}(e) & \text { for } e \neq \hat{e} \\ 2^{p-1} \boldsymbol{r}(e) & \text { for } e=\hat{e}\end{cases}
$$

That is, we increase the resistance on edge \hat{e} by a factor 2^{p-1}. Let $\tilde{\alpha}$ denote optimal value of program with the new resistances $\tilde{\boldsymbol{r}}$. Prove that

$$
\tilde{\alpha} \geq\left(1+\frac{p-1}{2} \gamma\right) \alpha .
$$

Hint: use the dual problem!

