The exercises for this week will not count toward your grade, but you are highly encouraged to solve them all. This exercise sheet has exercises related to week 9 . We encourage you to start early so you have time to go through everything.

To get feedback, you must hand in your solutions by 23:59 on May 18. Both hand-written and $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ solutions are acceptable, but we will only attempt to read legible text.

Exercise 1: Fenchel Conjugate Examples

- Consider the function $\mathcal{E}(y)=y^{4} / 4$, where $\mathcal{E}: \mathbb{R} \rightarrow \mathbb{R}$. Compute the Fenchel conjugate \mathcal{E}^{*} of \mathcal{E}. Verify the gradient and Hessian relationships between these that we discussed in class.
- Consider the function $\mathcal{E}(\boldsymbol{y})=\frac{1}{2}\|\boldsymbol{y}\|^{2}$, where $\|\cdot\|$ is an arbitrary norm. Compute the Fenchel conjugate \mathcal{E}^{*} the function.
Hint: express your answer using the dual norm

$$
\|\boldsymbol{z}\|_{*}=\max _{\substack{y \text { s.t. } \\\|\boldsymbol{y}\| \leq 1}} \boldsymbol{z}^{\top} \boldsymbol{y}
$$

- Consider the function $\mathcal{E}(\boldsymbol{y})=\|\boldsymbol{y}\|$, where $\|\cdot\|$ is an arbitrary norm. Compute the Fenchel conjugate \mathcal{E}^{*} the function. Warning: you may get ∞ somewhere....
- UPDATED. Consider the function $\mathcal{E}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\mathcal{E}(y)=\left\{\begin{array}{l}
y^{2.2} /(2.2) \text { if }|y| \leq 1 \\
\left.|y|^{1.1}-(1-1 / 2.2)\right) \text { if }|y|>1
\end{array}\right.
$$

Compute its Fenchel conjugate \mathcal{E}^{*}.

- BONUS (NEW). Consider the function $\mathcal{E}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\mathcal{E}(y)=\left\{\begin{array}{l}
y^{2.2} /(2.2) \text { if }|y| \leq 1 \\
\left.|y|^{1.1} / 1.1-(1 / 1.1-1 / 2.2)\right) \text { if }|y|>1
\end{array}\right.
$$

Compute its Fenchel conjugate \mathcal{E}^{*}.

Exercise 2: Fenchel Twice

- Consider a convex function $\mathcal{E}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with Fenchel conjugate \mathcal{E}^{*}. Suppose $\boldsymbol{\nabla} \mathcal{E}$ is a bijection. Explain why $\boldsymbol{\nabla} \mathcal{E}^{*}$ is the inverse function of $\boldsymbol{\nabla} \mathcal{E}$.
- Sketch a proof that given a convex function $\mathcal{E}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with Fenchel conjugate \mathcal{E}^{*}, we have $\left(\mathcal{E}^{*}\right)^{*}=\mathcal{E}$. I.e. the Fenchel conjugate transformation applied twice returns the original function. You may impose any technical conditions on \mathcal{E} that you like.

Exercise 3: Fenchel Transformation

Consider a convex function $\mathcal{E}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with Fenchel conjugate \mathcal{E}^{*}.

- Give a convenient expression for the Fenchel conjugate of $\widehat{\mathcal{E}}(\boldsymbol{y})=\mathcal{E}(\boldsymbol{y}+\boldsymbol{t})$, where \boldsymbol{t} is a fixed vector.
- Give a convenient expression for the Fenchel conjugate of $\widehat{\mathcal{E}}(\boldsymbol{y})=\mathcal{E}(\boldsymbol{M} \boldsymbol{y})$, where \boldsymbol{M} is an invertible matrix.
- Give a convenient expression for the Fenchel conjugate of $\widehat{\mathcal{E}}(\boldsymbol{y})=\mathcal{E}(\boldsymbol{y})+\boldsymbol{g}^{\top} \boldsymbol{y}$, where \boldsymbol{g} is a fixed vector.

Exercise 4: Newton Steps are affine invariant

Consider a convex function $\mathcal{E}(\boldsymbol{y}): \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Suppose that starting from \boldsymbol{y}_{0} we take a Newton step given by $\boldsymbol{\delta}=-H_{\mathcal{E}}\left(\boldsymbol{y}_{0}\right)^{-1} \boldsymbol{\nabla} \mathcal{E}\left(\boldsymbol{y}_{0}\right)$.
Next, consider the reparameterized function $\widehat{\mathcal{E}}(\boldsymbol{x})=\mathcal{E}(\boldsymbol{M} \boldsymbol{x})$, where \boldsymbol{M} is invertible. Suppose that starting from $\boldsymbol{x}_{0}=\boldsymbol{M}^{-1} \boldsymbol{y}_{0}$ we take a Newton step given by $\widehat{\boldsymbol{\delta}}=-H_{\widehat{\mathcal{E}}}\left(\boldsymbol{x}_{0}\right)^{-1} \boldsymbol{\nabla} \widehat{\mathcal{E}}\left(\boldsymbol{x}_{0}\right)$.

- Show that $\boldsymbol{y}_{0}+\boldsymbol{\delta}=\boldsymbol{M}\left(\boldsymbol{x}_{0}+\widehat{\boldsymbol{\delta}}\right)$.
- Suppose our updates $\boldsymbol{\delta}$ came from gradient descent instead of Newton steps - would a similar relationship still hold? What if M is orthonormal?

