Advanced Graph Algorithms and Optimization

Fenchel Conjugates and Newton Steps
 R. Kyng \mathcal{G} M. Probst Gutenberg
 Problem Set 9 - Wednesday, May 10th

The exercises for this week will not count toward your grade, but you are highly encouraged to solve them all. This exercise sheet has exercises related to week 9 . We encourage you to start early so you have time to go through everything.

To get feedback, you must hand in your solutions by 23:59 on May 18. Both hand-written and LTEX solutions are acceptable, but we will only attempt to read legible text.

Exercise 1: Fenchel Conjugate Examples

- Consider the function $\mathcal{E}(y)=y^{4} / 4$, where $\mathcal{E}: \mathbb{R} \rightarrow \mathbb{R}$. Compute the Fenchel conjugate \mathcal{E}^{*} of \mathcal{E}. Verify the gradient and Hessian relationships between these that we discussed in class.

Solution We have,

$$
\mathcal{E}^{*}(z)=\sup _{y \in \mathbb{R}}\left(y z-\frac{y^{4}}{4}\right)
$$

The expression is maximized when its derivative with respect to y is 0 (Since it is a concave function in y over an open domain). Therefore,

$$
\begin{aligned}
\frac{d\left(y z-\frac{y^{4}}{4}\right)}{d y} & =0 \\
\Longrightarrow z-y^{3} & =0 \\
\Longrightarrow y & =z^{1 / 3}
\end{aligned}
$$

This implies,

$$
\begin{aligned}
\mathcal{E}^{*}(z) & =z \cdot z^{1 / 3}-\frac{\left(z^{1 / 3}\right)^{4}}{4} \\
& =\frac{z^{4 / 3}}{4 / 3}
\end{aligned}
$$

We see that $\boldsymbol{\nabla} \mathcal{E}(y)=y^{3}, \boldsymbol{\nabla} \mathcal{E}^{*}(z)=z^{1 / 3}, H_{\mathcal{E}}(y)=3 y^{2}$ and $H_{\mathcal{E}^{*}}(z)=\frac{z^{-2 / 3}}{3}$. We can then
indeed verify that,

$$
\begin{aligned}
\boldsymbol{\nabla E}\left(\boldsymbol{\nabla} \mathcal{E}^{*}(z)\right) & =\boldsymbol{\nabla} \mathcal{E}\left(z^{1 / 3}\right)=z^{3 / 3}=z \\
\boldsymbol{\nabla} \mathcal{E}^{\star}(\boldsymbol{\nabla} \mathcal{E}(y)) & =\nabla \mathcal{E}^{*}\left(y^{3}\right)=y^{3 / 3}=y \\
H_{\mathcal{E}^{*}}(\boldsymbol{\nabla} \mathcal{E}(y)) & =H_{\mathcal{E}^{*}}\left(y^{3}\right) \\
& =\frac{y^{-6 / 3}}{3}=\frac{1}{3 y^{2}} \\
& =\frac{1}{H_{\mathcal{E}}(y)}=H_{\mathcal{E}}^{-1}(y)
\end{aligned}
$$

- Consider the function $\mathcal{E}(\boldsymbol{y})=\frac{1}{2}\|\boldsymbol{y}\|^{2}$, where $\|\cdot\|$ is an arbitrary norm. Compute the Fenchel conjugate \mathcal{E}^{*} the function.
Hint: express your answer using the dual norm

$$
\|\boldsymbol{z}\|_{*}=\max _{\substack{y \text { s.t. } \\\|y\| \leq 1}} \boldsymbol{z}^{\top} \boldsymbol{y}
$$

Solution We have,

$$
\begin{aligned}
\mathcal{E}^{*}(\boldsymbol{z}) & =\sup _{\boldsymbol{y} \in \mathbb{R}^{n}}\left(\boldsymbol{z}^{\top} \boldsymbol{y}-\frac{1}{2}\|\boldsymbol{y}\|^{2}\right) \\
& =\sup _{c \in \mathbb{R} \geq 0} \sup _{\substack{\boldsymbol{y} \text { s.t. } \\
\|\boldsymbol{y}\|=c}}\left(\boldsymbol{z}^{\top} \boldsymbol{y}-\frac{1}{2} c^{2}\right) \\
& =\sup _{c \in \mathbb{R} \geq 0}-\frac{1}{2} c^{2}+\sup _{\substack{\boldsymbol{y} \text { s.t. } \\
\|\boldsymbol{y}\|=c}} \boldsymbol{z}^{\top} \boldsymbol{y} \\
& =\sup _{c \in \mathbb{R} \geq 0}-\frac{1}{2} c^{2}+c \cdot \sup _{\substack{\boldsymbol{y} \text { s.t. } \\
\|\boldsymbol{y}\|=1}} \boldsymbol{z}^{\top} \boldsymbol{y} \\
& =\sup _{c \in \mathbb{R} \geq 0}-\frac{1}{2} c^{2}+c\|\boldsymbol{z}\|_{*}
\end{aligned}
$$

The expression is maximized when its derivative with respect to c is 0 or potentially when $c=0$ (boundry case since $\mathbb{R}_{\geq 0}$ is not an open domain). We an ignore the boundry case because we will see that it will only be optimal when $\|\boldsymbol{z}\|_{*}=0$. Therefore,

$$
\begin{aligned}
\frac{d\left(-\frac{1}{2} c^{2}+c\|\boldsymbol{z}\|_{*}\right)}{d c} & =0 \\
\Longrightarrow-c+\|\boldsymbol{z}\|_{*} & =0 \\
\Longrightarrow c & =\frac{\|\boldsymbol{z}\|_{*}}{2}
\end{aligned}
$$

This implies,

$$
\begin{aligned}
\mathcal{E}^{*}(\boldsymbol{z}) & =-\frac{1}{2}\|\boldsymbol{z}\|_{*}^{2}+\|\boldsymbol{z}\|_{*}^{2} \\
& =\|\boldsymbol{z}\|_{*}^{2}
\end{aligned}
$$

- Consider the function $\mathcal{E}(\boldsymbol{y})=\|\boldsymbol{y}\|$, where $\|\cdot\|$ is an arbitrary norm. Compute the Fenchel conjugate \mathcal{E}^{*} the function. Warning: you may get ∞ somewhere....

Solution We have,

$$
\begin{aligned}
\mathcal{E}^{*}(\boldsymbol{z}) & =\sup _{\boldsymbol{y} \in \mathbb{R}^{n}}\left(\boldsymbol{z}^{\top} \boldsymbol{y}-\|\boldsymbol{y}\|\right) \\
& =\sup _{c \in \mathbb{R} \geq 0} \sup _{\boldsymbol{y} \text { s.t. }}^{\|\boldsymbol{y}\|=c} \\
& \left(\boldsymbol{z}^{\top} \boldsymbol{y}-c\right) \\
& =\sup _{c \in \mathbb{R}_{\geq 0}}-c+\sup _{\substack{\boldsymbol{y} \text { s.t. } \\
\|\boldsymbol{y}\|=c}} \boldsymbol{z}^{\top} \boldsymbol{y} \\
& =\sup _{c \in \mathbb{R} \geq 0}-c+c \cdot \sup _{\substack{\boldsymbol{y} \text { s.t. } \\
\|\boldsymbol{y}\|=1}} \boldsymbol{z}^{\top} \boldsymbol{y} \\
& =\sup _{c \in \mathbb{R}_{\geq 0}}-c+c\|\boldsymbol{z}\|_{*} \\
& =\sup _{c \in \mathbb{R} \geq 0} c \cdot\left(\|\boldsymbol{z}\|_{*}-1\right)
\end{aligned}
$$

In this situation, we have 2 cases. If $\left(\|\boldsymbol{z}\|_{*}-1\right) \leq 0$ then $c=0$ is the optimal. Otherwise, we can push c as high as we want and get ∞. Therefore,

$$
\mathcal{E}^{*}(\boldsymbol{z})= \begin{cases}0 & \text { if }\|\boldsymbol{z}\|_{*} \leq 1 \\ \infty & \text { otherwise }\end{cases}
$$

- UPDATED. Consider the function $\mathcal{E}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\mathcal{E}(y)=\left\{\begin{array}{l}
|y|^{2.2} /(2.2) \text { if }|y| \leq 1 \\
|y|^{1.1}-(1-1 / 2.2) \text { if }|y|>1
\end{array}\right.
$$

Compute its Fenchel conjugate \mathcal{E}^{*}.

Solution We have,

$$
\mathcal{E}^{*}(z)=\sup _{y \in \mathbb{R}}(y z-\mathcal{E}(y))
$$

We notice that since $\mathcal{E}(y)$ is symmetric along $y=0$ (i.e $\mathcal{E}(y)=\mathcal{E}(-y)$), we can argue that $\mathcal{E}^{*}(z)$ is too. This is because for any $y \in \mathbb{R}, y z-\mathcal{E}(y)=(-y)(-z)-\mathcal{E}(-y)$ and we take a
supremum over the domain. So $\mathcal{E}^{*}(z)=\mathcal{E}^{*}(-z)=\mathcal{E}^{*}(|z|)$. Therefore, we can just focus on $z \geq 0$ for now. $(y z-\mathcal{E}(y))$ is a continuous concave function, but it is not differentiable when $|y|=1$. Thus, we need to consider 3 cases, $|y|<1,|y|>1$ and $|y|=1$. Setting derivative to 0 for $|y|<1$ we get,

$$
\begin{aligned}
|y|^{1.2} & =z \\
\Longrightarrow y & =z^{1 / 1.2} \\
\Longrightarrow(y z-\mathcal{E}(y)) & =z \cdot z^{1 / 1.2}-\frac{z^{2.2 / 1.2}}{2.2} \\
& =z^{2.2 / 1.2}(1-1 / 2.2) \\
& =\frac{z^{2.2 / 1.2}}{2.2 / 1.2}
\end{aligned}
$$

But the above is only valid for when $|y|<1$ which implies that it only applies when $z<1$. Setting derivative to 0 for $|y|>1$ we get,

$$
\begin{aligned}
1.1|y|^{0.1} & =z \\
\Longrightarrow y & =(z / 1.1)^{10} \\
\Longrightarrow(y z-\mathcal{E}(y)) & =z \cdot(z / 1.1)^{10}-(z / 1.1)^{11}+(1-1 / 2.2) \\
& =(z / 1.1)^{10} \cdot(z-z / 1.1)+(1-1 / 2.2) \\
& =\frac{z \cdot(z / 1.1)^{10}}{11}+(1-1 / 2.2)
\end{aligned}
$$

But the above is only valid for when $|y|>1$ which implies that it only applies when $z>1.1$. In the case when $|y|=1$ we get,

$$
(y z-\mathcal{E}(y))=z-1 / 2.2
$$

Notice that the function is convex and thus either will have one maximizer (or will approach infinity, which is not relevant here). Therefore, we are already done for when $0 \geq z<1$ and $z>1.1$ according to setting derivative to zero. In the case of $1 \leq z \leq 1.1$ the only maximizing point can be $y=1$. Thus,

$$
\mathcal{E}^{*}(z)= \begin{cases}\frac{|z|^{2.2 / 1.2}}{2.2 / 1.2} & \text { if }|z|<1 \\ \frac{|z| \cdot(|z| / 1.1)^{10}}{11}+(1-1 / 2.2) & \text { if }|z|>1.1 \\ |z|-1 / 2.2 & \text { o.w. }\end{cases}
$$

- BONUS (NEW). Consider the function $\mathcal{E}: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\mathcal{E}(y)=\left\{\begin{array}{l}
|y|^{2.2} /(2.2) \text { if }|y| \leq 1 \\
|y|^{1.1} / 1.1-(1 / 1.1-1 / 2.2) \text { if }|y|>1
\end{array}\right.
$$

Compute its Fenchel conjugate \mathcal{E}^{*}.

We have,

$$
\mathcal{E}^{*}(z)=\sup _{y \in \mathbb{R}}(y z-\mathcal{E}(y))
$$

Similar to the previous problem, we have $\mathcal{E}^{*}(z)=\mathcal{E}^{*}(-z)=\mathcal{E}^{*}(|z|)$ implying we can just focus on $z \geq 0$ for now. However, in this problem, $(y z-\mathcal{E}(y))$ is not just convex and continuous, but also differentiable everywhere. Thus, we can directly consider only the cases $|y| \leq 1$ and $|y|>1$.

Similar to the previous problem, for the case $|y| \leq 1$, setting derivative to 0 gives,

$$
\begin{aligned}
|y|^{1.2} & =z \\
\Longrightarrow y & =z^{1 / 1.2} \\
\Longrightarrow(y z-\mathcal{E}(y)) & =\frac{z^{2.2 / 1.2}}{2.2 / 1.2}
\end{aligned}
$$

The above case is valid when $|y| \leq 1$, implying it applies to $z \leq 1$. Now, setting derivative to 0 for $|y|>1$,

$$
\begin{aligned}
|y|^{0.1} & =z \\
\Longrightarrow y & =z^{10} \\
\Longrightarrow(y z-\mathcal{E}(y)) & =z^{11}-z^{11} / 1.1+(1 / 1.1-1 / 2.2) \\
& =\frac{z^{11}}{11}+(1 / 1.1-1 / 2.2)
\end{aligned}
$$

We have all cases covered for z, therefore,

$$
\mathcal{E}^{*}(z)= \begin{cases}\frac{|z|^{2.2 / 1.2}}{2.2 / 1.2} & \text { if }|z| \leq 1 \\ \frac{z^{11}}{11}+(1 / 1.1-1 / 2.2) & \text { o.w. }\end{cases}
$$

Exercise 2: Fenchel Twice

- Consider a convex function $\mathcal{E}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with Fenchel conjugate \mathcal{E}^{*}. Suppose $\boldsymbol{\nabla} \mathcal{E}$ is a bijection. Explain why $\boldsymbol{\nabla} \mathcal{E}^{*}$ is the inverse function of $\boldsymbol{\nabla} \mathcal{E}$.

Solution Because the gradient $\nabla_{y} \mathcal{E}$ is a bijection onto \mathbb{R}^{n}, given any $\boldsymbol{z} \in \mathbb{R}^{n}$, there exists a unique \boldsymbol{y} such that $\nabla \mathcal{E}(\boldsymbol{y})=\boldsymbol{z}$. Let $\boldsymbol{y}(\boldsymbol{z})$ be a \boldsymbol{y} s.t. $\boldsymbol{\nabla} \mathcal{E}(\boldsymbol{y})=\boldsymbol{z}$.
The function $\boldsymbol{y} \mapsto\langle\boldsymbol{z}, \boldsymbol{y}\rangle-\mathcal{E}(\boldsymbol{y})$ is concave in \boldsymbol{y} and has gradient $\boldsymbol{z}-\boldsymbol{\nabla} \mathcal{E}(\boldsymbol{y})$ and is hence maximized at $\boldsymbol{y}=\boldsymbol{y}(\boldsymbol{z})$. This follows because we know a differentiable convex function is minimized when its gradient is zero and so a differentiable concave function is maximized when its gradient is zero.

Then, using the product rule and composition rule of derivatives,

$$
\begin{aligned}
\boldsymbol{\nabla} \mathcal{E}^{*}(\boldsymbol{z}) & =\boldsymbol{\nabla}_{\boldsymbol{z}}(\langle\boldsymbol{z}, \boldsymbol{y}(\boldsymbol{z})\rangle-\mathcal{E}(\boldsymbol{y}(\boldsymbol{z}))) \\
& =\boldsymbol{y}(\boldsymbol{z})+\operatorname{diag}(\boldsymbol{z}) \boldsymbol{\nabla}_{z} \boldsymbol{y}(\boldsymbol{z})-\operatorname{diag}(\underbrace{\boldsymbol{\nabla}_{\boldsymbol{y}} \mathcal{E}(\boldsymbol{y}(\boldsymbol{z})}_{=\boldsymbol{z}})) \boldsymbol{\nabla}_{z} \boldsymbol{y}(\boldsymbol{z}) \\
& =\boldsymbol{y}(\boldsymbol{z})
\end{aligned}
$$

Thus we have $\boldsymbol{\nabla}_{y} \mathcal{E}(\boldsymbol{y}(\boldsymbol{z}))=\boldsymbol{z}$ and $\boldsymbol{\nabla}_{z} \mathcal{E}^{*}(\boldsymbol{z})=\boldsymbol{y}(\boldsymbol{z})$. We see that for any \boldsymbol{y}, there exists a \boldsymbol{z} such that $\boldsymbol{\nabla}_{z} \mathcal{E}^{*}(\boldsymbol{z})=\boldsymbol{y}$, namely, this is attained by $\boldsymbol{z}=\boldsymbol{\nabla}_{\boldsymbol{y}} \mathcal{E}(\boldsymbol{y})$. Thus, $\boldsymbol{\nabla} \mathcal{E}^{*}(\boldsymbol{\nabla} \mathcal{E}(\boldsymbol{y}))=\boldsymbol{y}$.

- Sketch a proof that given a convex function $\mathcal{E}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with Fenchel conjugate \mathcal{E}^{*}, we have $\left(\mathcal{E}^{*}\right)^{*}=\mathcal{E}$. I.e. the Fenchel conjugate transformation applied twice returns the original function. You may impose any technical conditions on \mathcal{E} that you like.

Solution Observe that

$$
\mathcal{E}^{* *}(\boldsymbol{u})=\sup _{\boldsymbol{z} \in \mathbb{R}^{n}}\langle\boldsymbol{u}, \boldsymbol{z}\rangle-\mathcal{E}^{*}(\boldsymbol{z})
$$

and let $\boldsymbol{z}(\boldsymbol{u})$ denote the \boldsymbol{z} obtaining the supremum (assume that \boldsymbol{z} is unique), in the above program. We then have $\boldsymbol{u}=\boldsymbol{\nabla} \mathcal{E}^{*}(\boldsymbol{z}(\boldsymbol{u}))$. Let us also assume that $\boldsymbol{\nabla} \mathcal{E}$ is a bijection. Letting $\boldsymbol{y}(\boldsymbol{z})$ be defined as in the previous part, we get $\boldsymbol{y}(\boldsymbol{z}(\boldsymbol{u}))=\boldsymbol{\nabla}_{z} \mathcal{E}^{*}(\boldsymbol{z}(\boldsymbol{u}))=\boldsymbol{u}$

$$
\mathcal{E}^{* *}(\boldsymbol{u})=\langle\boldsymbol{u}, \boldsymbol{z}(\boldsymbol{u})\rangle-(\langle\boldsymbol{z}(\boldsymbol{u}), \boldsymbol{y}(\boldsymbol{z}(\boldsymbol{u}))\rangle-\mathcal{E}(\boldsymbol{y}(\boldsymbol{z}(\boldsymbol{u}))))=\mathcal{E}(\boldsymbol{u}) .
$$

Exercise 3: Fenchel Transformation

Consider a convex function $\mathcal{E}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with Fenchel conjugate \mathcal{E}^{*}.

- Give a convenient expression for the Fenchel conjugate of $\widehat{\mathcal{E}}(\boldsymbol{y})=\mathcal{E}(\boldsymbol{y}+\boldsymbol{t})$, where \boldsymbol{t} is a fixed vector.

Solution We write the Fenchel conjugate as:

$$
\begin{aligned}
\widehat{\mathcal{E}}^{*}(\boldsymbol{y}) & =\sup _{\boldsymbol{y} \in \mathbb{R}^{n}} \boldsymbol{z}^{\top} \boldsymbol{y}-\widehat{\mathcal{E}}(\boldsymbol{y}) \\
& =\sup _{\boldsymbol{y} \in \mathbb{R}^{n}} \boldsymbol{z}^{\top} \boldsymbol{y}+\boldsymbol{z}^{\top} \boldsymbol{t}-\boldsymbol{z}^{\top} \boldsymbol{t}-\mathcal{E}(\boldsymbol{y}+\boldsymbol{t}) \\
& =\boldsymbol{z}^{\top} \boldsymbol{t}+\sup _{\boldsymbol{y} \in \mathbb{R}^{n}} \boldsymbol{z}^{\top}(\boldsymbol{y}-\boldsymbol{t})-\mathcal{E}(\boldsymbol{y}+\boldsymbol{t}) \\
& =\boldsymbol{z}^{\top} \boldsymbol{t}+\sup _{(\boldsymbol{y}+t) \in \mathbb{R}^{n}} \boldsymbol{z}^{\top}(\boldsymbol{y}-\boldsymbol{t})-\mathcal{E}(\boldsymbol{y}+\boldsymbol{t}) \\
& =\boldsymbol{z}^{\top} \boldsymbol{t}+\mathcal{E}^{*}(\boldsymbol{z})
\end{aligned}
$$

- Give a convenient expression for the Fenchel conjugate of $\widehat{\mathcal{E}}(\boldsymbol{y})=\mathcal{E}(\boldsymbol{M} \boldsymbol{y})$, where \boldsymbol{M} is an invertible matrix.

Solution We write the Fenchel conjugate as:

$$
\begin{aligned}
\widehat{\mathcal{E}}^{*}(\boldsymbol{y}) & =\sup _{\boldsymbol{y} \in \mathbb{R}^{n}} \boldsymbol{z}^{\top} \boldsymbol{y}-\widehat{\mathcal{E}}(\boldsymbol{y}) \\
& =\sup _{\boldsymbol{y} \in \mathbb{R}^{n}} \boldsymbol{z}^{\top} \boldsymbol{M}^{-1} \boldsymbol{M} \boldsymbol{y}-\mathcal{E}(\boldsymbol{M} \boldsymbol{y}) \\
& =\sup _{\boldsymbol{y} \in \mathbb{R}^{n}}\left(\left(\boldsymbol{M}^{-1}\right)^{\top} \boldsymbol{z}\right)^{\top} \boldsymbol{M} \boldsymbol{y}-\mathcal{E}(\boldsymbol{M} \boldsymbol{y}) \\
& =\sup _{\boldsymbol{M} \boldsymbol{y} \in \mathbb{R}^{n}}\left(\left(\boldsymbol{M}^{-1}\right)^{\top} \boldsymbol{z}\right)^{\top} \boldsymbol{M} \boldsymbol{y}-\mathcal{E}(\boldsymbol{M} \boldsymbol{y}) \\
& =\sup _{\boldsymbol{y}^{\prime} \in \mathbb{R}^{n}}\left(\left(\boldsymbol{M}^{-1}\right)^{\top} \boldsymbol{z}\right)^{\top} \boldsymbol{y}^{\prime}-\mathcal{E}\left(\boldsymbol{y}^{\prime}\right) \quad \text { (Transformation valid because } \boldsymbol{M} \text { is invertible) } \\
& =\mathcal{E}^{*}\left(\left(\boldsymbol{M}^{-1}\right)^{\top} \boldsymbol{z}\right)
\end{aligned}
$$

- Give a convenient expression for the Fenchel conjugate of $\widehat{\mathcal{E}}(\boldsymbol{y})=\mathcal{E}(\boldsymbol{y})+\boldsymbol{g}^{\top} \boldsymbol{y}$, where \boldsymbol{g} is a fixed vector.

Solution We write the Fenchel conjugate as:

$$
\begin{aligned}
\widehat{\mathcal{E}}^{*}(\boldsymbol{y}) & =\sup _{\boldsymbol{y} \in \mathbb{R}^{n}} \boldsymbol{z}^{\top} \boldsymbol{y}-\widehat{\mathcal{E}}(\boldsymbol{y}) \\
& =\sup _{\boldsymbol{y} \in \mathbb{R}^{n}} \boldsymbol{z}^{\top} \boldsymbol{y}-\mathcal{E}(\boldsymbol{y})-\boldsymbol{g}^{\top} \boldsymbol{y} \\
& =\sup _{\boldsymbol{y} \in \mathbb{R}^{n}}(\boldsymbol{z}-\boldsymbol{g})^{\top} \boldsymbol{y}-\mathcal{E}(\boldsymbol{y}) \\
& =\mathcal{E}^{*}(\boldsymbol{z}-\boldsymbol{g})
\end{aligned}
$$

Exercise 4: Newton Steps are affine invariant

Consider a convex function $\mathcal{E}(\boldsymbol{y}): \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Suppose that starting from \boldsymbol{y}_{0} we take a Newton step given by $\boldsymbol{\delta}=-H_{\mathcal{E}}\left(\boldsymbol{y}_{0}\right)^{-1} \boldsymbol{\nabla} \mathcal{E}\left(\boldsymbol{y}_{0}\right)$.
Next, consider the reparameterized function $\widehat{\mathcal{E}}(\boldsymbol{x})=\mathcal{E}(\boldsymbol{M} \boldsymbol{x})$, where \boldsymbol{M} is invertible. Suppose that starting from $\boldsymbol{x}_{0}=\boldsymbol{M}^{-1} \boldsymbol{y}_{0}$ we take a Newton step given by $\widehat{\boldsymbol{\delta}}=-H_{\widehat{\mathcal{E}}}\left(\boldsymbol{x}_{0}\right)^{-1} \nabla \widehat{\mathcal{E}}\left(\boldsymbol{x}_{0}\right)$.

- Show that $\boldsymbol{y}_{0}+\boldsymbol{\delta}=\boldsymbol{M}\left(\boldsymbol{x}_{0}+\widehat{\boldsymbol{\delta}}\right)$.

Solution For $\widehat{\mathcal{E}}$, we have $\boldsymbol{\nabla} \widehat{\mathcal{E}}(\boldsymbol{x})=\boldsymbol{M}^{\top} \boldsymbol{\nabla} \mathcal{E}(\boldsymbol{M} \boldsymbol{x})$ and $H_{\widehat{\mathcal{E}}}(\boldsymbol{x})=\boldsymbol{M}^{\top} H_{\mathcal{E}}(\boldsymbol{M} \boldsymbol{x}) \boldsymbol{M}$. We see that,

$$
\begin{aligned}
\boldsymbol{M}\left(\boldsymbol{x}_{0}+\widehat{\boldsymbol{\delta}}\right) & =\boldsymbol{y}_{0}+\boldsymbol{M}\left(-H_{\widehat{\mathcal{E}}}\left(\boldsymbol{x}_{0}\right)^{-1} \boldsymbol{\nabla} \widehat{\mathcal{E}}\left(\boldsymbol{x}_{0}\right)\right) \\
& =\boldsymbol{y}_{0}+\boldsymbol{M}\left(-H_{\widehat{\mathcal{E}}}\left(\boldsymbol{x}_{0}\right)^{-1} \boldsymbol{\nabla} \widehat{\mathcal{E}}\left(\boldsymbol{x}_{0}\right)\right) \\
& =\boldsymbol{y}_{0}-\boldsymbol{M}\left(\boldsymbol{M}^{-1} H_{\mathcal{E}}(\boldsymbol{M} \boldsymbol{x})^{-1}\left(\boldsymbol{M}^{\top}\right)^{-1} \boldsymbol{M}^{\top} \boldsymbol{\nabla} \mathcal{E}\left(\boldsymbol{M} \boldsymbol{x}_{0}\right)\right) \\
& =\boldsymbol{y}_{0}-H_{\mathcal{E}}(\boldsymbol{M} \boldsymbol{x})^{-1} \boldsymbol{\nabla} \mathcal{E}\left(\boldsymbol{M} \boldsymbol{x}_{0}\right) \\
& =\boldsymbol{y}_{0}+\boldsymbol{\delta}
\end{aligned}
$$

- Suppose our updates $\boldsymbol{\delta}$ came from gradient descent instead of Newton steps - would a similar relationship still hold? What if M is orthonormal?

Solution We have $\boldsymbol{\delta}=-\frac{1}{\beta} \boldsymbol{\nabla} \mathcal{E}\left(\boldsymbol{y}_{0}\right)$ and $\widehat{\boldsymbol{\delta}}=-\frac{1}{\beta} \boldsymbol{\nabla} \widehat{\mathcal{E}}\left(\boldsymbol{x}_{0}\right)$. We again need to show that $\boldsymbol{y}_{0}+\boldsymbol{\delta}=\boldsymbol{M}\left(\boldsymbol{x}_{0}+\widehat{\boldsymbol{\delta}}\right)$. We see that,

$$
\begin{aligned}
\boldsymbol{M}\left(\boldsymbol{x}_{0}+\widehat{\boldsymbol{\delta}}\right) & =\boldsymbol{y}_{0}+\boldsymbol{M}\left(-\frac{1}{\beta} \boldsymbol{\nabla} \widehat{\mathcal{E}}\left(\boldsymbol{x}_{0}\right)\right) \\
& =\boldsymbol{y}_{0}+\boldsymbol{M}\left(-\frac{1}{\beta} \cdot \boldsymbol{M}^{\top} \boldsymbol{\nabla} \mathcal{E}\left(\boldsymbol{M} \boldsymbol{x}_{0}\right)\right) \\
& =\boldsymbol{y}_{0}+\boldsymbol{M} \boldsymbol{M}^{\top}\left(-\frac{1}{\beta} \boldsymbol{\nabla} \mathcal{E}\left(\boldsymbol{y}_{0}\right)\right) \\
& =\boldsymbol{y}_{0}+\boldsymbol{M} \boldsymbol{M}^{\top} \boldsymbol{\delta}
\end{aligned}
$$

Therefore $\boldsymbol{M}\left(\boldsymbol{x}_{0}+\widehat{\boldsymbol{\delta}}\right)=\boldsymbol{y}_{0}+\boldsymbol{\delta}$ if we have $\boldsymbol{M} \boldsymbol{M}^{\top}=\boldsymbol{I}$ i.e. \boldsymbol{M} is orthogonal but not in general.

