
Advanced Graph Algorithms and Optimization Spring 2024

Classical Algorithms for Maximum Flow

R. Kyng & M. Probst Gutenberg Problem Set 7 — Monday, April 15th

The exercises for this week will not count toward your grade, but you are highly encouraged to
solve them all. This exercise sheet has exercises related to week 7. We encourage you to start early
so you have time to go through everything.

To get feedback, you must hand in your solutions by 23:59 on April 25. Both hand-written and
LATEX solutions are acceptable, but we will only attempt to read legible text.

Exercise 1: Implementing Field Preservations for Cut-Link Tree Rotations

In Chapter 12, Section 12.3, we described the operations PLink(u, v) and PCut(u, v) by doing
O(log n) tree rotations (in expectation). However, we omitted the details. Here we ask you to give
the pseudo-code for the operation PTreeRotation(v, w) where it is assumed that on input v is
the parent of w and the operation manipulates the tree over the path such that v and w change
position as described in the script. For simplicity, you are allowed to assume that w is the left child
of v in the treap Tp, and that the nodes leftTp(v), rightTp(v), leftTp(w), rightTp(w) exist. Accompany
your pseudo-code with a brief analysis that confirms that the run-time is indeed O(1).

Solution. The pseudocode is given in algorithm 1. Clearly, all updates in the algorithm (changing
pointers and updating ∆min and ∆cost values can be done in O(1) hence the total runtime is O(1).

Exercise 2: Blocking Flows on Expander Graphs

Some classical algorithms for maximum flow have the unexpected behaviour that they often termi-
nate much faster than their worst-case guarantee would suggest. One such algorithm is the blocking
flow algorithm. The goal of this exercise is to show that expander graphs are one class of graphs
for which blocking flow works particularly well.

In this exercise we develop an approximate s-t maximum flow algorithm for a φ-expander graph
G = (V,E) with n vertices and m edges. Each edge has unit capacity. Show the following.

1. Assume that the amount of s-t demand D is at most 1− ε of the maximum flow, i.e. the s-t
min-cut is at least 1/(1 − ε)D. Show that h = O( logmφε ) to send D flow from s to t in that
case.

Solution. Recall that running h iterations of blocking flow guarantees that the distance from s
to t in the residual graph is at least h+1 if not all the demand has been routed by Lemma 11.3.1 in
the script . Let f denote the (integral) flow computed after h iterations of blocking flow. Assume
for a contradiction that f does not route D flow.

1



Algorithm 1: PTreeRotation(v,w)

/* Recall we assume leftTp(v) = w; and w and v both have two children. */

/* We first change the parent pointer for the parent that supports the subtree

(if there is one). */

if parentTp(v) 6= NULL then
p← parentTp(v)
if leftTp(p) = v then

leftTp(p)← w
end
else

rightTp(p)← w
end

end
/* Compute roots of the subtrees rooted at the children of v and w. */

a← leftTp(w).
b← rightTp(w).
c← rightTp(v).
/* Change the tree structure according to the rotation. */

rightTp(w)← v.
leftTp(v)← b.
/* Update ∆cost() and ∆min() to new variables */

∆c(w)← cost(v)− cost(v) + cost(w).
∆c(v)← ∆cost(v) + min{∆min(b) + ∆min(w),∆min(c)}
∆m(w)← ∆min(v)
∆m(v)← ∆min(v) + min{∆min(c),∆min(w) + ∆min(b)}.
∆m(a)← ∆min(a)−∆min(w).
∆m(b)← ∆min(b)−∆min(w) + ∆m(v).
∆m(c)← ∆min(c)−∆m(v).
/* Update actual fields */

∆cost(w)← ∆c(w)
∆cost(v)← ∆c(v)
∆min(w)← ∆m(w)
∆min(v)← ∆m(v)
∆min(w)← ∆m(w)
∆min(w)← ∆m(w)
∆min(w)← ∆m(w)
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Consider the following algorithm. Initialize S0 = {s}. Then update S + i+ 1 ← Si ∪ {v|∃u ∈
Si s.t. (u, v) ∈ Gf } for h iterations i = 0, . . . , (h − 1)/2. Notice that the final set S does not
contain t since we only ran the algorithm for h steps. Now consider the volume of Si in G as a
function of the volume of Si−1. Clearly volG(S0) ≥ 1, otherwise there would not exist any flow
routing out of s. Then, we know that the cut EG(Si, V \ Si) contains at least φ volG(Si) edges as
long as volG(Si) ≤ volG(V )/2.

We now argue that a large fraction of these edges are also contained in the residual graph. An
edge is not in the residual graph if it routes out flow. This can happen for two reasons: 1) the flow
originated at s or 2) the flow got routed across the cut in opposite direction first. For every edge
of type two there is a paired edge that is in the cut, and therefore there are at least φ

2 volG Si edges
also in the residual graph. Therefore the volume of set Si is at least min((1+φε/2)i, 1+volG(V )/2).
Therefore after (h−1)/2 = O(logm/φε) iterations the set Si contains half the graph. The symmetric
argument from t yields a contradiction to the assumption that the distance between s and t is at
least h+ 1. This concludes our proof.
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