
Advanced Graph Algorithms and Optimization Spring 2024

The Cut-Matching Game

R. Kyng & M. Probst Gutenberg Problem Set 8— Monday, April 22th

The exercises for this week will not count toward your grade, but you are highly encouraged to
solve them all. This exercise sheet has exercises related to week 9 and 10. We encourage you to
start early so you have time to go through everything.

To get feedback, you must hand in your solutions by 23:59 on May 5th. Both hand-written and
LATEX solutions are acceptable, but we will only attempt to read legible text.

Exercise 1: Proof that Πt is doubly-stochastic

In chapter 13, we stated that the matrix Πt is doubly-stochastic. We now ask you to prove it.

Solution. Since each pti is a probability distribution, it is clear that
∑

i p
t
i = 1.

We prove that the matrix is left-stochastic by induction on t. For t = 0, we have that the matrix
Π0 = I which is trivial. For the step t 7→ t + 1, we observe for each (i, j) ∈ Mt+1, we have that

p
(t+1)
i = p

(t+1)
j = 1

2(pti + ptj), we must have for each `, that

p
(t+1)
i 7→` + p

(t+1)
j 7→` = 2 · 1

2
(pti 7→` + ptj 7→`) = pti 7→` + ptj 7→`

Thus, summing over all rows using the matching Mt+1, we get that the column sum is preserved
for each component `.

Exercise 2: Run-time Analysis of the Cut-Matching Algorithm

Analyze the run-time of the Cut-Matching algorithm to establish a total run-time of O(log2 n) ·
Tmax−flow(G) + Õ(m)1. You may assume that computing a random vector r takes O(n) time, and
you may use without proof that using link-cut trees you can find a path decomposition in Õ(m)
time.

Solution. Each invocation of FindBiPartition(·) can be implemented by finding a random
vector r in O(n) time, and then computing u = Πtr in time O(t ·n) time by simulating the random
walk along the found edges explicitly. In particular, letting M i be the operator corresponding to
the effect on the random walk by the matching Mi. Then Πt = M t ◦M t−1 ◦ · · · ◦M 1. Now, letting
u0 = r , we can compute iteratively u i = M iu i−1 until we derive u t (which is clearly equal u).
Each iteration M iu i−1 takes O(n) time since M i just averages the values of components i and j
for each edge (i, j) ∈Mi. Finally, finding the partition once u is computed can be done by sorting
components of u in Õ(n) time.

1Technically, we run the max flow procedure on graphs G with two additional vertices and n additional edges.
You should ignore this subtlety as it will not impact the asymptotics for any max-flow algorithm known.

1

Finally, each of the Θ(log2 n) iterations of SparsityCertifyOrCut invokes FindBiPartition(·)
once and then constructs the new flow problem in time O(m) and invokes a max-flow procedure.
Doing a path decomposition takes Õ(m) time. This establishes the claimed run-time.

Exercise 3: Bounding the Diameter of an Expander

Let G be a connected, unweighted graph that is a φ-expander with regard to conductance. Prove
that the diameter of G is O(logm/φ). You may find it useful that φ ≤ 1 and that ex < 1 + x+ x2

for x < 1.79.

Hint: Fix any pair of vertices s, t in G. Then think about running BFS explorations simultaneously
from s and t.

Solution. Let B(s, d) be the (closed) ball around s of radius d. Let E(B(s, d)) be the internal
edge set of B(s, d).

Observe that since G is connected, we have that |E(B(s, 0))| ≥ 1. Further, for each d ≥ 0 where
|E(B(s, d))| ≤ m/2, we have by the definition of a φ-expander that

|E(B(s, d), V \B(s, d))| ≥ φ · |E(B(s, d)|.

It follows that |E(B(s, d + 1)| ≥ (1 + φ)|E(B(s, d)|. Let dmax be the largest integer such that
|E(B(s, dmax))| ≤ m/2. It is clear from our discussion above that dmax ≤ 2 logm/φ since otherwise

|E(B(s, dmax))| > (1 + φ)2 logm/φ ≥ (1 + φ/2 + (φ/2)2)2 logm/φ ≥ elogm = m

which gives a contradiction to the fact that the number of edges in G is m.

Finally, follow the same argument from t. We have that both s, t must have their balls of radius
2 logm/φ containing more than m/2 edges respectively. But this implies that they intersect in an
edge. Thus, there is a path from s to t of length at most 4 logm/φ.

Exercise 4: ASZ Vertex Sparsifiers

In this exercise, we consider a very simple way of obtaining a vertex sparsifier due to Andoni, Stein
and Zhong. Recall that a vertex sparsifier of G = (V,E) is a graph H = (V ′, E′,w) with less
vertices than G that preserves some property of G with respect to a terminal set T ⊂ V, V ′. In this
exercise, the property we aim to preserve is the pairwise distance between vertices in T . Notice
that the vertex sparsifier is a weighted graph, whereas we assume G = (V,E) to be unweighted.
Similarly, edge sparsifiers of unweighted graphs are often also weighted, for example in the case
of cut/spectral sparsification. We assume that all shortest paths in G are unique, and that the
maximum degree in G is ∆.

We now describe the construction of H given G and T . First, we add all the terminal vertices in T
to V ′. Then, we sample every vertex with probability 100 log n/k and add all the sampled vertices
to V ′.To describe the edge set, we denote with BG(v, V ′) the largest ball around v that does not
contain any vertex in V ′.

2

We then describe a path collection P. For every vertex u, v ∈ B(u, V ′) and edge (v, x) ∈ E add
the path πG(u, v)⊕ (v, x) to P where πG(u, v) denotes the shortest path in between u and v in G.
Finally, we say that the pivot p(v) ∈ V ′ of each vertex v is the closest vertex to v in V ′. We then
let P̃ = {πG(p(u) ⊕ P ⊕ πG(v, p(v))|P ∈ P is a u − v path} be the set of paths projected to the
closest endpoints in V ′. Finally, the edge set E′ is constructed by adding an edge (u, v) of length
|P | for every u− v path in P̃. This concludes the description of the graph H.

1. Show that |B(v, V ′)| ≤ k with high probability for all v.

2. Argue that the expected number of vertices in V ′ is in Õ(|T |+ n/k).

3. Show that the size of the set |P| ≤ O(∆ · n · k) with high probability.

4. Show that for every pair u, v ∈ V ′, we have distG(u, v) ≤ distH(u, v) ≤ 4 distG(u, v).

Solution.

1. Directly follows from the fact that there are at most n2 shortest paths between vertices.
Therefore, any shortest path (segment) of length k is hit with high probability.

2. Directly follows since every vertex is sampled with probability Õ(1/k).

3. For every vertex there are up to k vertices in its ball. Each of these are incident to ∆ edges.

4. The first inequality directly follows from the construction. Then, consider the shortest path
πG(u, v) between the vertices u and v in G. We then construct a sequence as follows: u = x1.
Then, we let xi be the first vertex on the path πG(u, v) that is no longer in the ball B(xi, V

′).
Finally, we end the sequence with xl = v for some l. Notice that this means that the shortest
path between xi and xi+1 is in P. Consider the path p(x1), . . . , p(xl) in H. The length of this
path is then given by distG(u, v) + 2

∑l
i=1 dist(xi, p(xi)). But dist(xi, p(xi)) ≤ dist(xi−1, xi)

for i = 2, . . . , l − 1 and dist(xi, p(xi)) = 0 for i = 1, l. Therefore the claimed approximation
follows.

We have p(u) = u and p(v) = v. Then, consider the sequence of pivots u =
p(x1), p(x2), . . . , p(xl) = v. We will now argue that this is a short path in H.

Exercise 5: Distance Oracles

Recall the notion of a cluster in the context of Thorup-Zwick distance oracles for a graphG = (V,E).
For every vertex w, we let C(w) = {v ∈ V |dist(v, w) < dist(v, p(v))} i.e. the cluster of w contains
all vertices that are closer to w than to their pivot. As previously, we assume that the distances
(and thus shortest paths) are unique. Furthermore, assume that the distance dist(v, p(v)) of vertex
v to its pivot is known for every v ∈ V .

1. Show that for a vertex w we can compute the cluster C(w) by running a modified version of
Dijkstra in time Õ(|E(C(w))|).

3

Hint: First show that for a vertex t ∈ C(w), all the vertices on its shortest path π(t, w) to w
are also in C(w). Then, show that running the version of Dijkstra that does not relax edges from
vertices u for which dist(u, p(u)) ≤ dist(w, u) finds the whole cluster C(w).

Solution. We first show that for a vertex t ∈ C(w), all the vertices on its shortest path π(t, w) to
w are also in C(w). For the sake of contradiction, assume that there is a vertex t′ on the path π(t, w)
such that dist(t′, p(t′)) ≤ dist(w, t′). We then have dist(t, p(t)) ≤ dist(t, w)−dist(t′, w)+dist(t′, p(t′)
by triangle inequality (and because the pivot of a vertex is closer to it than any other pivot). Since
we have dist(t′, w) ≥ dist(t′, p(t′) because t′ is not in C(w), we obtain dist(t, p(t)) ≤ dist(t, w) in
contradiction to t being in C(w).

Given the first part of the hint, we conclude that the whole shortest path tree of the cluster routed
at w is contained in the cluster, and therefore running Dijkstra while only relaxing vertices that
are closer to w than to their pivot suffices.

4

