
Advanced Graph Algorithms and Optimization Spring 2024

The Cut-Matching Game

R. Kyng & M. Probst Gutenberg Problem Set 8— Monday, April 22th

The exercises for this week will not count toward your grade, but you are highly encouraged to
solve them all. This exercise sheet has exercises related to week 8. We encourage you to start early
so you have time to go through everything.

To get feedback, you must hand in your solutions by 23:59 on May 2. Both hand-written and LATEX
solutions are acceptable, but we will only attempt to read legible text.

Exercise 1: Proof that Πt is doubly-stochastic

In chapter 13, we stated that the matrix Πt is doubly-stochastic. We now ask you to prove it.

Exercise 2: Run-time Analysis of the Cut-Matching Algorithm

Analyze the run-time of the Cut-Matching algorithm to establish a total run-time of O(log2 n) ·
Tmax−flow(G) + Õ(m)1. You may assume that computing a random vector r takes O(n) time, and
you may use without proof that using link-cut trees you can find a path decomposition in Õ(m)
time.

Exercise 3: Bounding the Diameter of an Expander

Let G be a connected, unweighted graph that is a φ-expander with regard to conductance. Prove
that the diameter of G is O(logm/φ). You may find it useful that φ ≤ 1 and that ex < 1 + x+ x2

for x < 1.79.

Hint: Fix any pair of vertices s, t in G. Then think about running BFS explorations simultaneously
from s and t.

Exercise 4: ASZ Vertex Sparsifiers

In this exercise, we consider a very simple way of obtaining a vertex sparsifier due to Andoni, Stein
and Zhong. Recall that a vertex sparsifier of G = (V,E) is a graph H = (V ′, E′,w) with less
vertices than G that preserves some property of G with respect to a terminal set T ⊂ V, V ′. In this
exercise, the property we aim to preserve is the pairwise distance between vertices in T . Notice
that the vertex sparsifier is a weighted graph, whereas we assume G = (V,E) to be unweighted.
Similarly, edge sparsifiers of unweighted graphs are often also weighted, for example in the case
of cut/spectral sparsification. We assume that all shortest paths in G are unique, and that the
maximum degree in G is ∆.

1Technically, we run the max flow procedure on graphs G with two additional vertices and n additional edges.
You should ignore this subtlety as it will not impact the asymptotics for any max-flow algorithm known.

1

We now describe the construction of H given G and T . First, we add all the terminal vertices in T
to V ′. Then, we sample every vertex with probability 100 log n/k and add all the sampled vertices
to V ′.To describe the edge set, we denote with BG(v, V ′) the largest ball around v that does not
contain any vertex in V ′.

We then describe a path collection P. For every vertex u, v ∈ B(u, V ′) and edge (v, x) ∈ E add
the path πG(u, v)⊕ (v, x) to P where πG(u, v) denotes the shortest path in between u and v in G.
Finally, we say that the pivot p(v) ∈ V ′ of each vertex v is the closest vertex to v in V ′. We then
let P̃ = {πG(p(u) ⊕ P ⊕ πG(v, p(v))|P ∈ P is a u − v path} be the set of paths projected to the
closest endpoints in V ′. Finally, the edge set E′ is constructed by adding an edge (u, v) of length
|P | for every u− v path in P̃. This concludes the description of the graph H.

1. Show that |B(v, V ′)| ≤ k with high probability for all v.

2. Argue that the expected number of vertices in V ′ is in Õ(|T |+ n/k).

3. Show that the size of the set |P| ≤ ∆ · n · k with high probability.

4. Show that for every pair u, v ∈ V ′, we have distG(u, v) ≤ distH(u, v) ≤ 4 distG(u, v).

Exercise 5: Distance Oracles

Recall the notion of a cluster in the context of Thorup-Zwick distance oracles for a graphG = (V,E).
For every vertex w, we let C(w) = {v ∈ V |dist(v, w) < dist(v, p(v))} i.e. the cluster of w contains
all vertices that are closer to w than to their pivot. As previously, we assume that the distances
(and thus shortest paths) are unique. Furthermore, assume that the distance dist(v, p(v)) of vertex
v to its pivot is known for every v ∈ V .

1. Show that for a vertex w we can compute the cluster C(w) by running a modified version of
Dijkstra in time Õ(|E(C(w))|).

Hint: First show that for a vertex t ∈ C(w), all the vertices on its shortest path π(t, w) to w
are also in C(w). Then, show that running the version of Dijkstra that does not relax edges from
vertices u for which dist(u, p(u)) ≤ dist(w, u) finds the whole cluster C(w).

2

