
Advanced Graph Algorithms and Optimization Spring 2024

(Mostly) Convex Duality

R. Kyng & M. Probst Gutenberg Problem Set 9 — Monday, April 29th

The exercises for this week will not count toward your grade, but you are highly encouraged to
solve them all. This exercise sheet has exercises related to week 9. We encourage you to start early
so you have time to go through everything.

To get feedback, you must hand in your solutions by 23:59 on May 9. Both hand-written and LATEX
solutions are acceptable, but we will only attempt to read legible text.

Exercise 1: Different Duals

Let G = (V,E) be a directed graph with capacities c ∈ RE ≥ 0, and edge-vertex incidence matrix
B , and consider a demand vector d ∈ RV with d ⊥ 1.

Let us try to minimize
∥∥C−1f

∥∥
∞, where C = diage∈E c(e). This leads to an optimization problem

min
f ∈RE

≥0

∥∥C−1f
∥∥
∞

s.t. Bf = d

Solution

• Compute the dual of this problem. Note that we encoded the “constraint” f ≥ 0 in the
domain of the variable f . This means that there will not be a dual variable associated with
this constraint.

The dual is:

max
x

min
f ∈RE

≥0

∥∥C−1f
∥∥
∞ + x⊤(d −Bf )

= max
x

(
x⊤d + min

f ∈RE
≥0

−f ⊤B⊤x +
∥∥C−1f

∥∥
∞

)
= max

x
x⊤d

s.t.
∑
e

max(c(e)b⊤
e x , 0) ≤ 1

• Does Strong Duality hold for this pair of primal and dual problems?

Slater’s condition holds when there exists f > 0 s.t. Bf = d .

Note that there exists a flow f ≥ 0 s.t. Bf = d if and only if there exists a directed path
from s to t.

We can construct a flow f > 0 s.t. Bf = d if and only if for every directed edge (u, v) ∈ E,
there exists a directed path from s to u and a directed path from v to t. We can test decide
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this for all edges using a BFS starting at s forward along directed edges, and a BFS backward
along directed edges from t. Thus we can check if Slater’s condition holds, and in this case
Strong Duality holds. If some edge is not reachable from s or cannot reach t in this way,
then it cannot carry non-zero flow and we can remove it and obtain an equivalent problem.
However, we won’t address whether Strong Duality holds when such an edge exists and hasn’t
been deleted (in fact it does hold, which can be argued via Linear Programming Duality).

Consider also a variant of this problem, where we instead treat f ≥ 0 as an explicit constraint:

min
f ∈RE

∥∥C−1f
∥∥
∞

s.t. Bf = d

f ≥ 0

This problem has a different dual problem because we made f ≥ 0 an explicit constraint.

• Compute the dual of this variant of the problem.

The dual is:

max
x∈RV ,s∈RE

s≥0

min
f ∈RE

s⊤(−f ) +
∥∥C−1f

∥∥
∞ + x⊤(d −Bf )

= max
x

(
x⊤d + min

f ∈RE
−f ⊤(s +B⊤x ) +

∥∥C−1f
∥∥
∞

)
= max

x∈RV ,s∈RE

s≥0

x⊤d

s.t.
∑
e

c(e)
∣∣∣s(e) + b⊤

e x
∣∣∣ ≤ 1

• Explain how, given an optimal solution to the first dual problem, we can compute an optimal
solution to the second dual problem.

Observe that, given any x , the optimal choice of s(e) is s(e) = max(−b⊤
e x , 0), which gives

c(e)
∣∣∣s(e) + b⊤

e x
∣∣∣ = max(c(e)b⊤

e x , 0).

We can see that after choosing this value of s, the two duals are equal and must have the
same set of optimal x ∗, and given any such x ∗, we can get optimal s∗ by the above relation.

Exercise 2: A “Broken” Dual

Consider the following optimization problem

inf
x∈R,y∈R>0

e−x

s.t. x2/y ≤ 0.

• Compute the dual program.

• What is the optimal value of the primal program? And of the dual program? Does strong
duality hold? Does Slater’s condition hold?
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Solution The Lagrangian of this problem is:

L(x, y, s) = e−x + sx2/y

Hence, we have the following dual:

sup
s≥0

inf
x∈R,y∈R>0

e−x + sx2/y

Observe that y → x3 and x → ∞ gives a value of 0 in the limit. Thus, we are left with the following
dual problem:

sup
s≥0

0

The optimal value of this problem is β∗ = 0. Observe that the only primal-feasible x is x = 0.
Hence, we have for the optimal values of the primal and dual: α∗ = 1 > 0 = β∗. In other words,
strong duality does not hold. Slater’s condition is not fulfilled since the inequality x2/y ≤ 0 does
not hold strictly for any x ∈ R and y ∈ R>0.

Exercise 3: Norms and a Lagragian

Suppose 1 < q < p < ∞. In this exercise, we want to prove that for x ∈ Rn, we have

∥x∥q ≤ n1/q−1/p ∥x∥p . (1)

Consider the following optimization problem:

max
x∈Rn:∥x∥pp≤1

∥x∥qq

• Is this a convex optimization problem?

• Informally, explain why, at any maximizing x for the above problem, there should exist a
λ > 0 such that

∇x

(
∥x∥qq − λ ∥x∥pp

)
= 0.

• Use the existence of such a λ to prove Equation (1).

Solution It is not a convex optimization since we are maximizing a norm instead of minimizing
it. Assume that such a λ would not exist. Then we could find a δ such that δ ⊥ ∇∥x∥pp and
δ ̸⊥ ∇∥x∥qq. Thus we can move from x to x + ϵδ for a infinitesimally small ϵ increasing ∥x∥qq while
∥x∥pp stays constant. This would contradict the maximality of x .
The existence of λ implies that for all i ∈ [n]:

q · |x i|q−1 − λ · p · |x i|p−1 = 0 ⇔ |x i| =


(

q
p·λ

)1/(p−q)

0

3



In other words, for every maximizer, there exists a constant a such that |x i| =

{
a

0
for all i ∈ [n].

Suppose k coordinates are non-zero. Then we see that

1 = ∥x∥pp =
∑
i

ap = k · ap ⇔ a = k−1/p

Computing the q-norm of x : ∥x∥qq =
∑

i a
q = k1−q/p ≤ n1−q/p. Note that we can conclude that

the maximizer of the q given our p-norm constraint is non-zero on all coordinates, and equal on all
of them up to a sign.

Consider any x ∈ Rn and let x ∗ be the maximizer of the problem above. Then we have:

n1−q/p = ∥x ∗∥qq ≥

∥∥∥∥∥ x

∥x∥p

∥∥∥∥∥
q

q

=
∥x∥qq
∥x∥qp

⇔ n1/q−1/p ∥x∥p ≥ ∥x∥q .

Exercise 4: Flows and Voltages and Other Powers

Consider a connected undirected graph G = (V,E) with resistances r ∈ RE and edge-vertex
incidence matrix B , and a demand vector d ∈ RV with d ⊥ 1.

Given some p > 1, we’ll look at the flow optimization problem

min
f ∈RE

∑
e

r(e)
1

p
|f (e)|p

s.t. Bf = d .

• Is the above optimization problem convex?

• Does Slater’s condition hold for the problem?

• What is the dual problem for the problem? Define q > 0 to be the number such that 1 = 1
q+

1
p .

Try to find a clean expression of the dual. Writing the expression in terms of q instead of p
will simplify it.

Suppose our instance of the optimization problem has an optimal flow solution f ∗. Let
α =

∑
e r(e)

1
p |f

∗(e)|p be the optimal problem value. Suppose that for some particular edge ê
we have

γ =
r(ê)1p |f

∗(ê)|p

α
.

Now, consider a modified instance with resistances r̃ ∈ RE given by

r̃(e) =

{
r(e) for e ̸= ê

2p−1r(e) for e = ê

That is, we increase the resistance on edge ê by a factor 2p−1. Let α̃ denote optimal value of
program with the new resistances r̃ . Prove that

α̃ ≥
(
1 +

p− 1

2
γ

)
α.

Hint: use the dual problem!
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Solution The optimization problem is convex. There are only linear constraints and the objective
function is convex because |·| is convex and xp is convex and increasing on [0,∞) for p > 1.
Slater’s condition holds since we only have linear constraints.
The Lagrangian corresponding to the optimization problem is:

L(f ,x ) =
∑
e

r(e)
1

p
|f (e)|p + x⊤(d −Bf ) = x⊤d +

∑
e

r(e)
1

p
|f (e)|p − f (e)x⊤be

Thus, we get the following dual:

max
x∈RV

min
f ∈RE

x⊤d +
∑
e

r(e)
1

p
|f (e)|p − f (e)x⊤be

In order to compute the minimizing f ∗ we will set the gradient of ∇f L(f ,x ) to zero:

0 =
∂L(f ,x )

∂f (e)
= sign(f (e)) · r(e) · |f (e)|p−1 − x⊤be

Note that p− 1 = p/q. Hence, the above is equivalent to:

f (e) = r(e)−q/p · sign(x⊤be) ·
∣∣∣x⊤be

∣∣∣q/p (2)

Using that q − 1 = q/p, we can rewrite the dual problem:

max
x∈RV

L(f ∗,x ) = max
x∈RV

x⊤d +
∑
e

r(e)1−q 1

p

∣∣∣x⊤be

∣∣∣q − r(e)−q/p
∣∣∣x⊤be

∣∣∣q/p+1

= max
x∈RV

x⊤d +
∑
e

(
1

p
− 1

)
︸ ︷︷ ︸

−1/q

r(e)1−q
∣∣∣x⊤be

∣∣∣q

Now, we are considering the modified instance of the problem. Note that:

r̃(ê)1−q = 2(p−1)·(1−q)r(ê)1−q = 2−1r(ê)1−q

Let f ∗ and x ∗ be the old optimal flow and voltages respectively. Because of 2 we can write:

γ =
r(ê)1p |f

∗(ê)|p

α
=

r(ê)1−q 1
p

∣∣x⊤b ê

∣∣q
α

(3)

By strong duality we have:

α̃ = max
x∈RV

x⊤d −
∑
e

1

q
r̃(e)1−q

∣∣∣x⊤be

∣∣∣q
≥ x ∗⊤d −

∑
e

1

q
r̃(e)1−q

∣∣∣x ∗⊤be

∣∣∣q
= x ∗⊤d −

∑
e̸=ê

1

q
r(e)1−q

∣∣∣x ∗⊤be

∣∣∣q − 1

2q
r(ê)1−q

∣∣∣x ∗⊤b ê

∣∣∣q
= x ∗⊤d −

∑
e

1

q
r(e)1−q

∣∣∣x ∗⊤be

∣∣∣q + 1

2q
r(ê)1−q

∣∣∣x ∗⊤b ê

∣∣∣q
= α+

p

2q
γα =

(
1 +

p− 1

2
γ

)
α

In the second to last equality we used 3 and the optimality of x ∗. For the last equality we used
that p/q = p− 1.
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