
Chapter 3 

Point Location 

Keywords: computational geometry, higher dimensional searching, point location, frac- 

tional cascading, duality transform, line arrangements, randomized incremental construc- 

tion (RIC), locus approach. 

Searching is by no means limited to finding a query key in a set S of 

keys. In fact, more often than not, the domain of keys is partitioned into 

intervals, and the task is to find the interval which contains the query key. 

If the query domain is R“ for some d € N, we are often given a partition 

of R* and we are asked to locate a query point q € R4 in the partition— 

we are amidst the realm of point location. Mostly it is assumed that 

the partition is fixed (or subject to minor changes’) while there are many 

queries. Therefore, it pays to preprocess the partition in preparation of 

fast queries. 

We will see that even higher dimensional point location problems can 

be resolved via 1-dimensional point location, often several of them, and 

sometimes interleaved in an intricate way. An alternative approach is to 

generate the partition in a random fashion which produces a query structure 

on the side, as we will see—we can view this as the higher dimensional 

counterparts of random search trees. 

The Locus Approach. What, for example, if we are given a nonempty set S 

of real numbers and for a given query number q we want to find the closest 

number in S, i.e. the number a € S that minimizes |a — q|? A moment of 

reflection shows that there is a slight problem of ambiguity, namely it may 
  

1In this chapter we concentrate on the static setting where we assume the partition is 

fixed—not that the alternative dynamic setting is less important, by no means! 
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54 CHAPTER 3. POINT LOCATION 

be that this a is not unique. Take, for example, S := {1,2,4} and q = 1.5: 

Both, 1 and 2 minimize the distance to 1.5. 

Indeed, a set of n € N real numbers 

Ag < ay <<... << Ay] 

partitions R into n — 1 points and n open intervals two of which extend to 

infinity: 
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In each interval there is a unique closest key in S, while the points are 

exactly those query numbers where the closest key in S is not unique. 
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Figure 3.1: The numbers do, a), a2, and a3 partition R into regions of equal 

answers to “closest number queries.” 

The scenario derived here is quite typical, called locus approach. The 

domain is partitioned into regions of equal answers, and a query point is 

located among those regions which entails the answer to the query. In 

our example an optimal O(n) space, O(nlogn) preprocessing time and 

O(logn) query time solution evolves readily. 

Exercise 3.1. Two Closest Numbers 

Suppose you are given a finite set S CR, 2 < |S|, which 1s to be prepro- 

cessed so that for query q € R the answer is ‘the’ set {b1,b2} C S of the 

two closest numbers in S (t.e. max{|b;—q|, |b2—q|} < mMinges\yn, p2}/A—|). 

Follow the locus approach for the problem and describe the resulting 

partition of regions of equal answers (and be aware of the ambiguity 

issue, 1.e. the ‘the’ has to be taken with caution).



3.1. POINT/LINE RELATIVE TO A CONVEX POLYGON 55 

3.1 Point/Line Relative to a Convex Polygon 

The convex hull? conv(P) of a finite set P of points in the plane is a bounded 

convex set. Unless conv(P) degenerates to the empty set, a single point, or 

a line segment, it is bounded by a convex polygon, a closed simple piece- 

wise linear curve that separates the interior of conv(P) from the exterior. 

This polygon can be finitely described by a sequence of its vertices, in 

counterclockwise order, say. 

This section deals with two geometric problems concerning convex poly- 

gons that turn out to be 1-dimensional queries in disguise. They prepare 

for the more involved structures to come. 

Inside /On/Outside a Convex Polygon. A convex polygon C can be easily pre- 

processed for deciding whether a query point lies inside, on, or outside of 

C: We sort the x-coordinates of the vertices of C and prepare them for 

binary search (in a linear array). The intervals between two consecutive 

x-coordinates are associated with the two lines that carry the edges of C 

in the corresponding x-range of the plane. For a query point q, we first 

locate its x-coordinate x, in this structure. If x, is smaller than the small- 

est x-coordinate of the vertices, q is clearly outside C; same if larger than 

the largest x-coordinate. Otherwise, x, lies in some interval and we can 

compare q with the two associated lines to decide about the answer to the 

query (we leave the issue, whether the intervals are open, closed, halfopen 

to the reader). Summing up, the structure needs O(n) space and O(logn) 

query time. If the vertices of C are provided in sorted order along C, the 

structure can be built in linear time. 

A Line Hitting a Convex Polygon. The question whether a query line ¢ in- 

tersects a given convex polygon C is slightly more interesting. We observe 

that £ intersects C iff it lies between (or coincides with one of) the two 

tangents to C parallel to £. Such a tangent (parallel to 2) is determined by 

a vertex of C on t (every tangent contains one or two vertices of C). 

  

2We assume some familiarity with convexity: Recall that the convex hull of aset P C R@ 

is defined as the set {Dd pep ApP |Ap € Ri, Dper Ap = 1} of its convex combinations. 

Actually, for our purposes (P finite in the plane), an intuitive picture of a rubber band 

contracting around nails representing the points in P should suffice.
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We prepare for the queries as follows. We direct every edge of C in the 

direction as we pass it moving around C in counterclockwise order. Every 

such directed edge e has an angle «, in the range [0,27) with the x-axis. 

Note that if e and the next edge e’ (in counterclockwise order) share vertex 

v, then all directed tangents which have C to their left and have an angle 

in the range from a, to « touch C in vertex v (some care is needed if e is 

the edge of largest angle). 

The angles of the edges are stored in sorted order %, %1,..., X,_1 in an 

array. For i € [n— 1], the vertex incident to the edges of angles «;_; and 

o;, is associated with the interval [o;_1, «;,); the vertex incident to edges of 

angles a and «,_; is associated with both [0, ~)) and [a_1, 271). 

Given a query line ¢, we get two angles § and 8’—depending on which 

direction we assign to ’—which we locate in our array. The vertices v and 

v’ associated to the found intervals determine the tangents parallel to £. £ 

misses C iff both v and v’ lie on the same side of 2. 

Again, we have an optimal® structure with linear storage and prepro- 

cessing time, and with logarithmic query time. 

Exercise 3.2. Locally vs. Globally Convex 

We are given a sequence of points Po, P1,---)Pn—-1 2n the plane, such 

that for alli € {0.n— 1}, the sequence pi, Pis1,Pis2 are vertices of a 

triangle in counterclockwise order (indices are understood modulo n). 

Is this necessarily the sequence of vertices (in counterclockwise order) 

of a convex polygon? 

Exercise 3.3. Convex Hull of Two Convex Polygons 

Two conver polygons are given by their respective lists of vertices 

an counterclockwise order. Show that the convez hull of these two 

polygons can be computed in O(n + m) time, where n and m are the 

number of vertices of the polygons. 

HINT: Imagine two parallel directed tangents, one for each polygon which has the 

polygon to its left, wrapping around the polygons. The respective “outer” tangent 

is the tangent of the convex hull of both polygons. 

Exercise 3.4. Finding a Key vs. Line Hitting Convex Polygon 

Given a sorted sequence dp < ay <... < Gn_1 of n real numbers, we 

1 

n—1 

consider the convez polygon C with vertices ((ai, az)) 5: Fork eR, 

  

3See Exercise 3.4 in support of this claim of optimality.
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show that the line with equation y = 2kx — k* intersects C iff k € 

{do, Q1,..+, An}. 

REMARK: This exercise is supposed to exhibit that deciding whether a line inter- 

sects a convex polygon cannot be easier than deciding whether a query key is ina 

given set of keys. 

3.2 Line Relative to Point Set 

Suppose we are given a set P of points and we want to decide whether a 

query line has all of the points on one side. To this end we can compute 

the convex hull of P, or rather the convex polygon C bounding conv(P), 

and then decide whether the line intersects C; thus, we are back in known 

territory. Computing the convex hull of n points can be done in O(n logn) 

time’. 

Reporting the Points Below a Query Line. Next we want to preprocess P such 

that the points in P below a non-vertical query line can be reported quickly, 

each point exactly once’. Note that in an optimal solution, we definitely 

have to allow time O(k), k the number of points reported, and we have to 

allow time O(log n), n := |P|, since we decide whether the convex hull of P 

is intersected. Hence, a structure with O(k+logn) query time is optimal®. 

If P is the vertex set of a convex polygon C, a structure with optimal 

query time O(k + logn) is relatively easy to derive given previously es- 

tablished knowledge: In O(logn) time we find a vertex p of C which is 

contained in the tangent which has C above and is parallel to the query 

line 2. If p is above or on £ we are done, since no point in P can be below 

f. Otherwise, starting from p we first move in clockwise order through the 

vertices of C and report them (as ‘below £’) until we either have exhausted 
  

“You may remember this from a previous course (Informatik 2). Otherwise, you will 

have to accept this as a fact of life or discover it yourself—it’s not hopeless. 

5If you are in need or desire of motivation or illustration: A medical doctor has a 

database which stores each of her patients with their respective heights h and weights 

w; the pairs (h,w) are points in the plane. She wants to query all of her patients with 

above-‘ideal’ weight. Ideal weight is defined by a linear function w = Ah+ u with A and w 

chosen according to fashion trends and most recent findings about the ideal human body 

(oh yes, separate structures for female and male patients are needed). As A and u change 

with intention and over time, she has to be ready for ever changing queries ... 

®Note that max{k, logn} = O(k + logn}, since for a,b € R,, at < max{a,b}<a+b.



58 CHAPTER 3. POINT LOCATION 

all vertices or we meet the first vertex not below ¢. In the latter case, we 

have to repeat the same procedure in counterclockwise order. Assuming 

that the vertices of C are represented in a doubly linked list, the reporting 

part (after discovery of p) can be performed in time O(k). Altogether O(n) 

storage and O(k + logn) query time suffices. 

In order to handle general sets P, we first define the onzon of P as the 

sequence 

(Ro, Vo), (Ri, Vi ), teey (Ri, Vi) 

obtained as follows. If P is empty, the sequence is empty. Otherwise, let 

Ro := conv(P) and let Vo be the vertex set of Ro. (Ry, Vi), (Ra, V2),.- +) (Res Vi) 

is recursively defined as the onion of P \ Vo. We observe that 

e Ro DR D... D Ri hence, if Rj is completely above or on a line £, 

then all R;, j € {i..t} are above or on the line @, and so are all V,, 

j € {t..t} 

e (Vo, Vi,---, Vi} is a partition of P into nonempty sets. 

Each V; is either the vertex set of a convex polygon or |V;| < 2. In either 

case we can preprocess V, so that the points in V, below a query line can 

be reported in time O(k; + logn;), k; the number of points reported and 

n;, = |V,|.. Having established the structures for all i € {0..t} we start a 

query with a line £ in the structure for Vo, report all points in Vo below £, 

then proceed to the structure for V;, etc. until either (i) we have reached a 

V, that is completely above or on ¢ or (ii) we get to the situation that we 

have exhausted all sets (i.e. have reached V,). In case (i), this takes time 

j-l j 

O(d_ ki +} logni) = O(k + (j +1) logn) = O[(k +1) logn) , 
i=0 i=0 

for k := ye k,, the number of points in P below £. We use here j < k: 

Since each ki, i € {0..j — 1}, is at least 1 we have 

j—1 j—1 

i=0 0 

The case (ii) takes time O() ;_,ki + );_)logni) which is bounded by 

O((k +1) logn) as well.
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The O((k + 1)logn) bound we proved falls short of the bound O(k + 

logn). For example, if k = [logn] our bound reads O((logn)*) instaed’ of 

O(log n). 

Searching in Many Lists. For an improvement of the structure we have a 

closer look at where we lose time. Whenever we handle a new convex 

polygon V, in the structure, we locate a real number 3 (the angle of the 

query line 2) in a linear array storing a set of numbers, call it $;. And we 

throw away all the information from V; when we locate the same number 

in the next array for V;,;. We could take one array for all angles occurring 

in any of the structures for the V,’s, and then have for each interval t + 

1 pointers to the respective intervals in the structures. Since there are 

roughly n intervals in the overall array, this yields roughly t -n pointers 

and thus spoils our linear bound on the storage. 

For a better solution we first enhance the sets S; with extra numbers 

resulting in new sets S;. The ‘last’ set S, is left untouched, so S, := S;. For 

i=t—1,t—2,...,0, to obtain S; we add to S; every other number of S;,; in 

its sorted order starting with the second number. Hence |5;| < |S;|+ Beal 

Each of the S,’s is again stored in a linear array. For 0 <i < t—1, each 

interval I of S; is either completely contained in an interval I’ of $;,; or it 

contains exactly one number a € 5;,; in its interior. In the former case we 

add a pointer from I to I’, in the latter a pointer from I to a; comparison 

of the query number ® with a determines the interval of S;,; containing 

f. Hence, in this enhanced structure, we can locate 8 in constant time in 

Sist, given we have it already located in S;. Summing up, if S; is the last 

structure we have to search in (i.e. } = t or no point in V, is below query 

line £), the overall query time went down to 

O(k+ logn +j) = O(k + logn) 

location in the first array 

which is optimal. 

What is the overall size of the structure? It is easy to see that it is 

bounded by O(} ;_) 7), 7 := [Sil 

Lemma 3.1. )j 97 < 2n. 
  

"I recently read a short article cliaming that for us to be able to read and absorb 

wodrs, all that matters is that the frist and last letter of a word are in palce, othwreise 

any perumttaoin will do.
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Proof. Set N; := vis n; and N; := vis 7;. We prove N; +7; < 2Nj. 

Since Ny = Yio nm, and No = n, this yields the assertion of the lemma. 

We proceed by induction on j, for j = t down toj = 0. The induction basis 

is given by Ni +7 = 2m = 2N«. For the induction step, let j <t. We use 

Nj <njt+ Tit and induction hypothesis for 

N; +n = Nua +27; < Nya + 2nj + yar < 2Nj41 + 2n; = 2N; 

For an alternative proof® we sum up the inequalities 1; < n, + Tit j€ 

{0.t— 1} and 7, = nt to obtain No < No + Mee Since Np > 0, we have 

No < No+ No which readily gives the claimed inequality (recall No = n). 

  

This proof is not only shorter but also develops in a more natural fash- 

ion. The first version may still be convenient when we extend to tree 

structures (instead of the linear structure here) at a later point. 

So linear storage and optimal query time is established. For prepro- 

cessing, we have to compute at most n convex hulls of at most n points 

each for construction of the onion. This can be done in O(n*logn). Better 

solutions with time O(nlogn) for onion construction are known but will 

not be treated here. 

Theorem 3.2. A set P of n points in the plane can be preprocessed in 

time O(n*logn) and linear storage so that the set of points below a 

query line can be reported in time O({k+logn), k the number of points 

below the query line. 

The method of cascading some of the elements of one list to another 

list is called fractional cascading? which has numerous applications. 

What if we want to count the number of points below a query line? 

Clearly, the above solution can be employed, but we cannot really justify 

spending time k for delivering a number ‘k’. Ideally, we would expect here 

an answer in time O(logn). Towards such an achievement, we introduce a 

simple but fertile concept from geometry. 

Duality. A point in the plane is given by a pair (a,b) € R*. A non-vertical 

line in the plane can be described by an equation y = ax + b, so it’s again 
  

8Provided by Philipp Zumstein who attended the course in summer 2004. 

° Fractional cascading: teilweises Herunterstiirzen.
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Figure 3.2: Fractional cascading: In the upper picture, black bullets are 

the original entries in the lists, while the white bullets are inherited from 

the lists of higher index. In the lower picture we see the pointers added in 

the structure. They point from an interval either to a containing interval 

(in the next list) or to a point in its interior (in the next list). 

specified by a pair (a,b) € R?. So lines and points in the plane are just 

different interpretations of the same ‘thing’, namely R*. Duality exploits 

this fact—it maps points to lines and lines to points with interesting im- 

plications. 

Let * be the mapping that maps points to non-vertical lines, and non- 

vertical lines to points by 

point p=(a,b) +> line p*: y=ax—b 

line £: y=ax+b + point 2* = (a,—b) 

Note that point p = (a,b) lies on line £: y=cx+ d iff 

b=cat+d => —d=ac—b 

and thus iff point {* = (c,—d) lies on line p* : y = ax—b. We say that the 

duality * preserves incidences. It also preserves relative position, which 

will be useful for our purposes.
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Figure 3.3: Three points and two lines and their duals. What is the dual 

of the intersection s of lines h and g? 

Observation 3.3. Let p be a point and’ a non-vertical line in R?. Then 

(2) (p*)* =p and (f*)* =£, (a) pel if & ep*, and (12) p les above £ 

aff &* lies above p*. 

Exercise 3.5. Lines Intersecting Segment 

What 1s the shape of the set of duals of all non-vertical lines that 

intersect a given line segment s? 

Exercise 3.6. The Dual of a Parabola 

What is the set of duals of all tangents to the parabola y = x?? 

Exercise 3.7. Points and Intervals to Points and Lines 

A real number c € R is mapped to point € = (c,c*) € R? and an interval 

I=(a,b) CR, a< b, ts mapped to the line T: y=(a+b)x—ab. Show 

that c € I iff € below T. 

Exercise 3.8. Alternative Duality 

Consider the following duality ° between points in the plane and lines 

disjoint from the origin (0,0). 

point p=(a,b) 1 lune p®: ax+by=1 

line £: ax+by=1 + point 0° = (a,b) 

What is the shape of the set of duals of all lines intersecting a given 

conver polygon C with (0,0) inside C?
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Counting the Points Below a Query Line. Given a set P of n points in R? 

and a query line £ we observed that the points p € P below ¢ are exactly 

those for which 2* is below p*. In other words, our original problem of 

counting the points from some given set P below a non-vertical query line 

£ can be transformed into a problem of counting lines from a given set L 

of non-vertical lines above a query point q. That, on the other hand, is a 

point location problem: The plane is partitioned into regions of answers i, 

1 € {0..n}, and what is left is to locate q in these regions. How does the 

region of points with i lines above look like? 

For k € [n], the k-level, A;,, of a set L of n non-vertical lines is the set 

of all points in R* which have at most k—1 lines above and at most n— k 

lines below. Hence, a point on the k-level is disjoint from at most n — 1 

lines in L and thus it must lie on at least one of the lines in L. Moreover, 

it is easily seen that every vertical line intersects the k-level in exactly one 

point (the lowest point on this vertical line which has at most k — 1 lines 

above it). That is, the k-level is an x-monotone piecewise linear curve in 

the plane. 

Given a point q and a bi-infinite x-monotone curve C, we write C > q 

(q > C), if q lies below (above, resp.) the curve C. And we write C > q, 

if C > q or q € C; and similarly for q = C. 

Observation 3.4. For k € [n], the k-level A, is an x-monotone bi-infinite 

curve in the plane. If 1<i<j<n, every point on the i-level 1s either 

on or above the j-level. 

The number of lines in L above a point q is min{k | q > Ax} —1, 

with the convention that Ani: 1s a symbolic curve with q >= Any for 

all q € R*. 

So the question of how many lines are above a query point q can be 

resolved by locating q among the A;,’s, which can be done by binary search 

with O(logn) comparisons of q with these curves. Remains the issue of (i) 

‘How efficiently can we compare q with such a curve?’ and (ii) ‘How much 

space is needed to store the k-levels for such comparisons?’. 

The Complexity of a Line Arrangement. A set L of n lines in the plane parti- 

tions R* into areas of various dimensions: vertices (of dimension 0), edges 

(dimension 1), and cells (dimension 2). The cells are the connected com- 

ponents of R* after removal of all lines in L; so the cells are open convex
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Figure 3.4: An arrangement of four lines, with the 2-level emphasized. Cells 

are marked with the number of lines above. 

regions disjoint from the lines in L. The edges are the connected compo- 

nents on the lines after removal of the intersections with the respective 

other lines; so edges are contained in the lines, and since each line in L has 

at most n — 1 intersections with the other lines, there are at most n edges 

contained in each line—makes at most n? edges altogether (some of which 

may extend to infinity). Finally, the vertices are what is left, i.e. the points 

in the plane that are contained in at least two lines. Therefore there are at 

most (3) of them. The vertices, edges, and cells, they are called the faces, 

with their incidence structure are called the line arrangement (of L). Two 

faces are called incident if one is contained in the relative closure’® of the 

other. 

Lemma 3.5. n € N. An arrangement of n lines has at most (3) vertices, 

at most n* edges, and at most ("3") +1 cells. If no three lines intersect 

in acommon point and no two lines are parallel, all of these bounds 

are attained. 

(The proof of the cell-bound is left as an exercise.) 

Recall that a k-level is contained in the union of the lines in L, hence it is 

composed of edges and vertices of the arrangement of L. The edges are the 
  

10Tn perhaps more intuitive terms, ‘one lies on the boundary of the other.’ For example, 

an edge is incident to its endpoints and to two cells; a cell is incident to its bounding 

edges and their vertices.
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linear pieces which connect the vertices, except for two edges that extend 

to infinity. We define the complexity m, of A, as the number of edges 

from the arrangement of L in A;; hence, the number of vertices incident to 

these edges is m, — 1. Clearly, the k-level can be stored with O(m,) space 

so that the relative position of a query point with respect to the level can 

be determined in time O(log(m, + 1)) = O(logn) (note that m, < n? for 

sure). Note, moreover, that every edge of the arrangement is contained in 

exactly one level, hence yet my <n. 

We have obtained as an intermediate result: A set of n lines in the 

plane can be stored in O(n?) space, so that the number of lines above 

a query point can be determined in time O((logn)*). 

For an improvement of the query time we call for fractional cascading 

again (we will have to live with the quadratic space). Let us store (at least 

conceptually) the levels of an arrangement in a balanced tree for locating 

q among them, with leaves holding the number of lines above a point q 

whose search ends there. In every inner node v of the tree we have to find 

for x, (the x-coordinate of the query point q) the interval I among the set 

S, of x-coordinates of the respective level with I 5 xq (then we can compare 

q with the line holding the edge in the span of the interval). Depending 

on the outcome of the comparison, we proceed to the left or to the right 

child, and—unless this is a leaf—have to locate x, again, etc. At present, 

we do the location anew from scratch again and again. 

Instead, we now enhance the sets S,, by extra values inherited from its 

descendants in the tree, resulting in new sets S,. If a node v has no child 

which is an inner node, we leave the set unchanged: S, := S,. Otherwise, 

we add to S,, every other value from each of the sets S,,, u non-leaf child of 

v. As before, we start with the respective second elements of the lists, so 

that 

Si<isit yO Be, 
unon—leaf child of v 

After this bottom-up generation of the sets in the nodes of the tree, we 

proceed top-down and add for each node v pointers from each interval I 

determined by S,, one pointer for each non-leaf child u of v. This pointer 

either directly points at an interval determined by S,, contained in I, or 

to the unique number of S,, that is contained in the interior of I. In this 

way, we can again proceed in constant time from an interval in a node to
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the interval in its child. Only in the root of the tree we will have to spend 

logarithmic time for an initial location of xq. 

With an induction proof analogous to that of Lemma 3.1 we get 

Lemma 3.6. 

dy Bi< 2-0 Is < 2r 
v inner node v inner node 

That is, we were able to cut down the query time to O(logn) without 

asymptotic increase in space. We state our result in the original primal 

setting. 

Theorem 3.7. A set P of n points in the plane can be preprocessed with 

storage O(n’) so that the number of points below a non-vertical query 

line can be computed in time O(logn). 

Remains the issue of how much time preprocessing takes. Time O(n? log n) 

is relatively easy to derive, but optimal O(n) is possible. We will not fur- 

ther elaborate on this. 

Exercise 3.9. Below a Line, in Convex Position 

Design a data structure that stores a set P of n points in convex posi- 

tion in the plane (t.e. these are the vertices of some convex polygon) 

in O(n) space so that the number of points below a query line can be 

obtained in O(logn) time. 

REMARK: This should serve as a warning that the complexity of the partition into 

regions of equal answers is by no means necessarily a lower bound for the space of 

a data structure supporting the respective queries—even for optimal query time. 

Exercise 3.10. Low Complexity Arrangements 

What are the minimum numbers of vertices, edges, and cells in an 

arrangement of n lines? 

Exercise 3.11. Number of Cells in Arrangements 

Prove that an arrangement of n lanes in the plane has at most ("3") + 2 

1= (5) + (7) +(5) cells. 
Hint: What is the maximum increase in the number of cells if we add a new line 

to an arrangement of n — 1 lines? 

Exercise 3.12. Prove Lemma 3.6.
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Exercise 3.13. Stabbing Line Segments 

Design an efficient data structure that stores a set of n line segments 

in the plane, so that the number of segments intersected by a query 

line can be computed in O(logn) time. 

Hint: Prior treatment of Exercise 3.5 is recommended. 

Exercise 3.14. Moving Points 

We are given n moving points on the real line R. Hach point i € [n] 

has a starting position s; € R and a velocity v € R: Location of point 

i at time t € R, is s; +t-vy. A query consists of a location peR and 

time t € R,, and we want to know the set of points that pass location 

p after tume t. Describe a data structure that supports such queries 

after preprocessing the set of moving points. 

3.3. Planar Point Location—More Examples 

We have seen that the problem of counting the points (from a given set) 

below a query line can be translated to the problem of locating a point in 

a subdivision (partition) of the plane. The latter appears again and again. 

An obvious occurrence is that of locating a point in a map. 

Point Relative to Convex Polytope. Suppose we want to decide for a given 

convex polytope P C R?® with n > 4 vertices whether it contains a query 

point q € R®. The boundary of such a polytope decomposes into the n 

vertices, at most 3n — 6 edges, and at most 2n — 4 facets'*. We can store 

the planes carrying the facets, and compare a query point with each of them 

to decide whether it lies in the polytope or not. This takes time and space 

O(n). Point location after preprocessing allows improvement to O(log n) 

query time and linear space. 

To this end, we let the boundary of P split into an upper part (seen from 

far above) and a lower part (seen from far below). For a formal definition, 

any vertical line that meets the polytope intersects it in a vertical line 

segment (possibly a single point). The collection of topmost points of these 

segments forms the upper boundary, and the bottommost points form the 
  

11This nice linear relationship between the number of faces of various dimensions in a 3- 

dimensional polytope breaks down as we leave ‘our’ 3-space. For example, a 4-dimensional 

polytope with n vertices may have @(n*} edges!
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lower boundary; note that there are parts of the boundary that appear 

both on the upper and lower boundary, and in degenerate cases, there may 

be parts that appear in neither one (if edges or facets are vertical). 

The vertical projection of facets, edges, and vertices of the lower bound- 

ary gives a subdivision of a convex polygon in the plane. If a query point 

q projects to some point outside this polygon, it lies outside the polytope 

P. Otherwise it lies in the projection of some facet of the lower boundary 

of P. If this facet is determined by point location in the projection, we can 

compare q with this plane: If q is below the plane, q is outside. Otherwise, 

we still have to decide whether it is also below the upper boundary of P in 

an analogous fashion. 

Closest Point in the Plane—the Post Office Problem. We want to preprocess 

a set S of n points in the plane so that for a query point q, the point in S 

closest to q is delivered. (In fact, this point need not be unique; if so, we 

may ask for all closest points or just one of them.) 

We follow the locus approach for this problem, i.e. we ask for p € S: 

What are the query points q for which p is the closest point? Note that 

for two points p and p’, the bisector’? b of p and p’ separates between 

points closer to p (p’s side of b), points at equal distance to both (the 

line b itself), and points closer to p’. Let us denote by h(p,p’) the open 

halfplane determined by b containing p. Then the set of points Vs(p) closer 

to p than to any other point in S can be written as 

Vs(p) = (] hlp,p’). 
p'es\{p} 

It is called the Voronoi cell of p (w.r.t. S). From this characterization it 

follows that a Voronoi cell is a convex set with a piecewise linear boundary. 

The collection of all Vs(p), p € S, with their edges and vertices is a 

subdivision of the plane, the Voronoz diagram of S. Point location in this 

structure solves closest neighbor queries. 

What is the complexity of the subdivision? It has n cells, but some of 

these cells may require many (up to n — 1) edges to store their boundary. 

In order to get a bound on the overall number of edges, we consider the 
  

12The bisector of two points p and p’ is the line orthogonal to the segment conv{p, p’} 

through its midpoint 24? .
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Figure 3.5: Voronoi diagram of eleven points. 

dual graph'*D of the Voronoi diagram: Its vertices are the points in S. Two 

points p and p’ are connected by a (“combinatorial”) edge {p, p’}, if their 

Voronoi cells share a common (geometric) edge e; e is called the edge dual 

to {p,p’}. This graph has the same number of edges as there are edges™* in 

the Voronoi diagram. Moreover, this graph is planar; embed the graph D 

by leaving the points where they are, and an edge {p,p’‘} of D is drawn by 

connecting p with some inner point of the edge dual to {p, p’} by a straight 

line segment, and then continue with a straight line segment to p’. Note 

that here edges are not realized by straight line segments, but that is not 

required in a plane embedding of a graph. 

It follows that D has at most 3n — 6 edges, and so the Voronoi diagram 

has at most 3n—6 edges. Therefore, the number of vertices of the Voronoi 

diagram is linear in n, since their number cannot be more than twice the 

number of edges. (In fact, since the vertices of the Voronoi diagram are 

in correspondence to the regions of the dual graph, their number cannot 

exceed 2n — 4; actually, 2n — 5, why?) 

  

13The straight line embedding of this graph is called the Delaunay diagram of the point 

set, a versatile structure with many applications from finite element methods in numerics 

to geometric modeling. 

14This claim presumes that any two Voronoi cells cannot share two or more edges, which 

is true, since they are convex.
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Summing up, the number of cells, edges, and vertices of the Voronoi 

diagram of n points is O(n). 

We have never formally defined what a planar subdivision is. In the 

examples we have seen that the regions of interest were bounded by straight 

line segments, the edges of the subdivision. If for a query point q we 

know the edge of the subdivision above’ it, then the region containing q is 

identified. That should clearly establish the link between the point location 

problems identified here, and the problem solved in the section below. 

3.4 Trapezoidal Decomposition 

Before we proceed to the problem of the section, we get acquainted with 

the method by retreating to a simplified 1-dimensional scenario once more. 

Warm-up. A set S of n real numbers partitions R into n+ 1 intervals. For 

a concrete setting, if aj, < a7 <... < a, is the sorted sequence of the 

numbers in S, then we let these intervals be [a;, aj.1),j =0,1,...,n, with 

the convention dy := —oo and a,41 := +00; so, in fact, it’s a subdivision of 

[—co, 00) = RU {—co}. Given S (not in sorted order), we want to prepare 

the subdivision for point location queries of the following type: For query 

q € R, the leftmost number in the interval containing q is requested (the 

number a; with q € [a,;, a;,1)); this clearly identifies the interval containing 

q. Sorting S in O(nlogn) time and then storing it in an array allows 

queries to be performed in O(logn) time. We describe here a different 

method to prepare for generalization to R?. 

The approach takes a random order 5s), $2,..., $, (u.a.r. from all permu- 

tations) of the numbers in S, and ‘constructs’ the subdivision by start- 

ing with the subdivision for the empty set (this is the single interval 

Ip := [-o0, 00)). In this initial trivial situation, point location is partic- 

ularly simple: The answer is —oo for any query. 

In general, when a new number sg; is inserted, an interval among those 

defined by S;_; := {81, 82,..., 8,1} disappears and two new intervals appear: 

The interval I = [a, b) containing s; disappears and the new intervals are 

I' := [a,s;) and I” := [s;,b). That is, the replacement is easy to perform, 

as soon as we get our hands on I. 
  

15Vertically above it, in y-direction.
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The trick is to never really destroy an interval I whenever it disappears. 

Instead we mark it as ‘destroyed’, with two pointers to the intervals I’ 

and I” it got replaced by. This produces a directed graph, with the initial 

interval Iy as the source (vertex with no ingoing pointer). Vertices marked 

as ‘destroyed’ are those intervals which have at some point appeared and 

then disappeared. The remaining intervals in the structure are those that 

actually make up the current subdivision; they are the sinks of the structure 

(i.e. without outgoing pointers). The graph is called the history graph for 

obvious reasons. 

A new number s; can easily be located in the structure generated for 

Si_1. We start in Ip. If it is marked ‘destroyed’ (this is definitely the case, 

unless i = 1), we can decide with one comparison which of the intervals 

that replaced Ip contains s;; this interval is either an interval of the current 

subdivision, or is marked ‘destroyed’ and has two pointers, etc. And after 

insertion of the last number s,, we have a point location structure for 

the whole set handy! 

How much time does it take to locate a query point q in this struc- 

ture? This is proportional to the number of times the interval containing 

q changes in the process, which depends on the order in which we have 

inserted the elements in S. Let X;, i © [mn], be the indicator variable for 

the event that the interval of S;_; containing q differs from the interval 

of S; containing q. The expected number of intervals containing q ever 

generated is E[X], X := 1+ X;+X2+...+ Xn, where the expectation is 

relative to the random choice of the order s;,57,...,Sn. 

The analysis of E[X;] is surprisingly simple, assuming the right view of 

the problem (see also Exercise 2.29): We build the random permutation of 

S in backwards order, starting with sy, Sn_1, ..... AS we choose s; u.a.r. 

in S \ {Sist, Siz2)---)Sn} (note, this is S;), the interval of S; containing q 

differs from the one in S;_, iff s; is one of the two endpoints of this interval. 

This can happen with probability at most 2, since s; is chosen u.a.r. from 

i elements, and an interval has two endpoints (which may be —oo or ov, 

that’s why the probability is at most ? and, in general, not exactly 2). 
Therefore, E[X;] < 2, We have E[X;] = 1 and thus E[X] <1+1 +yi,2 = 

2H, = O(logn) for n > 1. 

We have shown that for any q € S, the expected query time for q is 

O(logn). It also shows that inserting s; in the structure so far (for S;_1) is 

done in expected time O(logi) = O(logn), and thus the whole structure
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for S is built in expected time O(nlogn). 

Have we discovered a new data structure for searching among n keys 

(or for sorting them)? Of course not—we leave it to the reader to realize 

that we encountered just another description of random search trees (e.g. 

the history graph is a tree here, which we did not emphasize, since it is not 

the case in the generalization to come). 

The Segment Above—the Set-Up. A segment s in the plane is the convex 

hull of two points p; and p2 in R*. The segment s deprived of its endpoints 

p; and p>? is called the relative interior of s. 

A set S of segments is called non-crossing, if every segment in S is 

disjoint from the relative interiors of the other segments. So segments may 

intersect only in their respective endpoints. P(S) is the set of endpoints of 

the segments in S; we have |P(S)| < 2|S|. We call S in general position, if 

no two endpoints in P(S) have the same x-coordinate; this excludes vertical 

segments, in particular. The set of relative interiors of the segments in S 

is denoted by S°; if S is non-crossing, for every point p in U,css there is a 

unique element f in P(S) US° with f 5 p. 

Furtheron we assume that S is a set of n non-crossing segments in 

general position in the plane. A vertical upward ray emanating at a point 

q € R? is either disjoint from S, or there is a first point p where it meets 

Uses $ (that could be q itself, if q lies on some of the segments in S). In 

the former case we define above(q) := T (representing a symbolic segment 

above everything), or in the latter case above(q) is the unique f with p € 

f € P(S)US*. 

Our goal is to preprocess S so that for any query point q € R? the 

endpoint or segment above(q) above q can be computed quickly. 

We make a semplifying assumption for ease of exposition: The query 

point q lies on none of the segments and shares its x-coordinate with none 

of the endpoints in P(S) (in particular, q never has an endpoint above it). 

It is easy to extend to these cases, but it distracts from the essentials at a 

first encounter of the method. 

Trapezoidal Decomposition. For the sake of establishing the data structure, 

we actually refine the subdivision obtained by partitioning R? into regions 

of equal answer to our queries.
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For every endpoint p in P(S) we consider two vertical extensions, one 

from p upward until the first segment in S° is met, and one downward until 

the first segment in S° is met; in either case, if no segment is met, we let 

it extend to infinity. The set of connected components of R* without all 

segments in S and without all vertical (upward and downward) extensions 

from points in P(S) is called trapezoidal decomposition of S, denoted by 

T(S) (see Figure 3.6). Note that every region in 7(S) is a trapezoid (in- 

cluding artifacts as triangles, infinite trapezoidal slabs, halfplanes, or even 

the whole plane R* if S = 0). Every point in such a trapezoid has the same 

segment in S above it; according to our simplifying assumption, a query 

point has to lie in one of the trapezoids. Therefore, locating a point in this 

decomposition will solve our task. 

Trapezoids are convenient since they have constant size descriptions. 

Do we have to pay for this with an increase in the number of regions? Not 

more than a constant factor, as the next lemma establishes. 

Lemma 3.8. For a set S of n non-crossing segments in general position 

in R* we have |T(S)| = O(n). 

Proof. We associate the trapezoids of 7(S) with the regions of a planar 

graph with N = O(n) vertices; this allows us to conclude that the number 

of regions is at most 2N —4 = O(n). 

To this end we enclose S by a big circle, where we cut all the vertical 

extensions that would otherwise extend to infinity. In this way we get a 

plane drawing of a graph—hence, a planar graph. Vertices are P(S) and the 

endpoints of the vertical extensions, including those on the enclosing circle; 

hence at most 3/P(S}| < 6n of them. Edges are the sections of segments, 

vertical extensions, and the circle between such vertices; hence, at most*® 

3(6n) — 6, since the graph is planar. Finally, the number of regions is at 

most 2(6n) — 4. This also bounds the number of trapezoids, since every 

trapezoid in 7(S) is either a region of the graph, or, if it is infinite, it 

contains a region. 

In fact, it can be shown that there are at most 3n+ 1 trapezoids in 

T(S). 

  

16Recall that a planar graph with N > 3 vertices has at most 3N — 6 edges, and ina 

plane embedding, the number of regions is at most 2N — 4.
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The History Graph. For some ordering o = s1,$2,...,S, of S let S; := 

{S1)$2,---, Si}. The history graph of S (w.r.t. o) has vertex set U7» 7 (Si). 

There is a directed edge from T to T’ if there is an i € [n] such that 

Te T(Si-1) \ T(Si), T’ € T(Si) \ T(Si-t), and TNT' # @. The source of 

this graph is Ty := R?, and the sinks are the trapezoids in 7(S). 

  

  

  

Figure 3.6: Two segments, development of their trapezoidal decomposition, 

and the history graph. 

The idea behind this definition follows the pattern we have encountered 

in the previously seen 1-dimensional counterpart. We generate 7(S) in- 

crementally, adding one segment after the other. Whenever a trapezoid T 

disappears, we mark it as ‘destroyed’, and equip it with pointers to those 

new trapezoids that intersect the area of T. Location of a point q starts in 

the source, and as long as we are in a destroyed trapezoid, we proceed to 

the unique successor which contains q. In the end we have reached a sink 

of the structure, which corresponds to the trapezoid of 7(S) containing q. 

Three issues determine the quality of the structure (sweeping the issue of 

preprocessing under the rug). 

(i) The size of the structure, i.e. the number of vertices and edges of the 

history graph. 

(ii) For a query point q, the length of the path followed by q from Tp to 

its trapezoid in 7(S). Or equivalently, the number of trapezoids in
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UE, 7 (S;) containing q. 

(iii) For a query point q, the time it takes to proceed from a ‘destroyed’ 

trapezoid T 5 q to its successor containing q. 

The proof of the following crucial fact is left as an exercise (see Exer- 

cise 3.16). 

Observation 3.9. Given T € T(Si1) \ T(Si), the number of trapezoids in 

T(S;) overlapping with T is at most 4. 

That is, for q € T, we can proceed in constant time to the successor 

trapezoid containing q. And the size of the history graph structure is linear 

in the number of its vertices (i.e. trapezoids), since there are at most four 

times as many edges. 

Roughly speaking, a trapezoid in 7(S) is determined by four segments 

in $, two responsible for the upper and lower boundary, resp., and two 

segments responsible for the left and right, resp., delimiting vertical exten- 

sion. Clearly, the same segment may serve several purposes, or some of the 

boundary elements may be missing. So more precisely: 

Observation 3.10. Gzven T € T(S), there is a set S' CS (not necessarily 

unique) of at most 4 segments, such that T € T(S’). 

That is, if T € 7(S), there are at most 4 segments in S whose removal 

lets T disappear (in a backwards process). 

Now we assume that the ordering o = s1,52,...,S, is chosen u.a.r. 

from all n! permutations of S. A backwards analysis argument (along the 

same lines as in the 1-dimensional warm-up example) employing Observa- 

tion 3.10 shows that, for a given q € R’, the expected number of trapezoids 

in 7(S) containing q is at most 4H, = O(logn). 

Similarly, any trapezoid T in 7(S;) disappears (in the backwards pro- 

cess) because of removal of a random segment in S; with probability at most 

‘. So the expected number of trapezoids removed in the backwards process 

from $; to S;_; is at most ¢ - O(i) = O(1) (since there are O(i) trapezoids 

in 7(S;)). Hence, the overall expected number of trapezoids ever removed 

in the backwards process (i.e. the overall expected number of trapezoids in 

T(S)) isn -O(1) = O(n).
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Theorem 3.11. Let S be a set of n non-crossing segments in general 

position in the plane. 

Assume au.a.r. random ordering of the segments in S. Then the 

history graph has expected size O(n). For any fired q € R*, the ez- 

pected time for locating q (with the history graph structure) in T(S) is 

O(logn). 

The history graph can be computed in expected O(nlogn). The main 

detail to overcome is how to determine the trapezoids being destroyed by 

insertion of a new segment s. For that, one endpoint p of s is located 

(the structure is always ready for such an operation, as we know), and 

then starting at p we ‘walk’ along s from one trapezoid to the next. All 

trapezoids encountered are destroyed. New ones have to be generated. 

The general underlying principle, randomized incremental construc- 

tzon has numerous applications including computations of convex hulls (of 

point sets in any dimension) or Voronoi diagrams. 

Exercise 3.15. Not too Many, not too Few 

Let S be a set of n> 2 non-crossing segments in the plane. Show that 

the set P(S) of endpoints of S satisfies 

2+ F< |P(S}|<2n. 

Exercise 3.16. Overlapping Trapezoids 

Let S be a nonempty set of non-crossing segments in general position 

in the plane, let s € S, and let T be a trapezoid in T(S \ {s}) \ T(S). 

Depending on the number of endpoints of s inside T (0, 1, or 2), in- 

vestigate how many trapezoids overlapping with T can be created by 

adding s to S \ {s}. 

Exercise 3.17. Nearest Neighbor Changes 

We are given a set P of n points in R* and a point q which has distinct 

distances to all points in P. We add the points of P in random order 

(starting with the empty set), and observe the nearest neighbor of q 

an the set of points inserted so far. What is the expected number of 

distinct nearest neighbors that appear during the process?


