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Figure 2.1: The Good and the Bad. 

Random binary search trees, and their analysis, provide a good vehicle 

for recapitulating basic concepts and tools from probability theory, includ- 

ing conditional expectation and linearity of expectation, which will be vi- 

tal ingredients all over this course. Moreover, search trees are crucial data 

structures in computer science.' We will see how the favorable expected 

behavior of random search trees (i.e. binary search trees obtained by in- 

serting elements in random order without rebalancing) can be preserved, 

even if the elements are inserted in any “bad” order. Moreover, there will 

be a (re-)encounter with quicksort. 

  

lTrees often lose against hashing, though, if simple searching, insertion and deletion 

is all that is needed. Most likely this is true in practice, and in theory it depends on the 

underlying model of computation. But see quote in beginning of Section 2.7. 
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2.1 Definition 

Before talking about random search trees, let us clarify what we mean 

(here) by a search tree for a given set S of n, n € N, distinct real numbers’, 

the keys. These are binary ordered rooted trees, i.e. there is a distinguished 

node, called the root, and every node has at most two children, either a left 

and a right child, or one left or one right child, or no children at all; nodes 

without children are called leaves. The nodes are labeled by elements in S. 

In order to specify this labeling, we define 

S“ = {a€S|a<x} and 

S* <== {a€S|a>x},forxeR. 

With A denoting the empty tree, we let 

A, if S=0, and 

+ 

a A for x € S, otherwise. 

We have specified here search trees for S by means of a replacement sys- 

tem (or grammar), similar to context free grammars’, except that we are 

defining here trees instead of strings. Also, it is important to note that Bs 

does not stand for just one tree (unless |S| < 1) but for a whole family of 

trees, namely all trees that can be derived following the above recipe. We 

denote this family by Bs. For example, 

By = {A}, By ={O}, Bay = io, oy, wee 

(for Bry 23; see Figure 2.2 below). Note that we skip the empty subtrees A 

A\ 

in the drawings of the trees, i.e. we display © instead of A 
  

For the sake of concreteness we talk here about real numbers. All we need and exploit 

is that S is a totally ordered set, e.g. strings over some alphabet, or such like. 

3In fact, we are dealing here with an attributed grammar, since the variables of our 

grammar are associated with an attribute, here the set S.
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For searching a key x in such a tree, we traverse the tree starting at the 

root. If its key is x we are done; if x is less than the key in the root, we 

continue with the left subtree; otherwise, with the right subtree. If we ever 

enter an empty subtree, we know that x is not in the tree. The number 

of nodes traversed in the tree determines the cost of the search, which is 1 

plus the depth of the searched for node: 

The depth, d(v), of a node v is defined by 

d(v) = 0, if v is the root, and 

~ | 14d(u),u parent of v, otherwise. 

The height of a tree is the maximum depth among its nodes. Figure 2.1 

shows two trees with 15 nodes of height 3 and 14, respectively. 

If we want to insert a new key in a binary search tree, then we first start 

a search for it. Hither we find the key, when there is nothing to do. Or we 

end up in an empty subtree, when we replace it by a one-node tree holding 

the new key. 

Random Search Trees. A slight twist in the definition of search trees leads 

to our specification of random search trees: 

A, if S =0, and 

AN 
‘ ‘ for x Exar, S, otherwise. 

In this procedural definition the left and right subtree of the root are as- 

sumed to develop independently. The probability of a tree is defined as 

the probability that it is the result of the above randomized process—we 

obtain a probability distribution* on Bs. For |S| < 2 this is the uniform 

distribution, but for |S| > 3 it is not uniform, see Figure 2.2. 
  

*Recall that, given a countable probability space 0, a probability distribution is a 

mapping Pr[] that assigns to every element w € © a probability Pr[w] € [0,1], so that 

we o Prlw] = 1. Often, when the probability space is finite, we consider the uniform 

distribution where each element gets equal probability Tee
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Lemma 2.1. S C R, finite. Given a tree in Bs, we let w(v), v a node, 

denote the number of nodes in the subtree rooted at v. 

The probability of the tree according to the above distribution is 

TL, wa? where the product is over all nodes v of the tree. 

Proof. For S a finite set, let Prs [] be the probability distribution on Bs 

according to our procedural definition above. Then Prg [A] = 1. If the root 

of a non-empty tree T in Bs holds key x and has a left subtree T' and a right 

subtree T”, then Prs [T] = a » Prs<x [T']- Prs>x [T”]. The values suggested 

in the assertion of the observation satisfy this recurrence. 

Why do we consider this distribution, rather than any other, the uni- 

form distribution, say? The reason is that this distribution is the same 

as the one obtained by inserting the keys in S into an initially empty tree 

in random order drawn u.a.r. from all permutations. For us the above 

definition comes more handy. 

Pores 
Figure 2.2: The trees in B23), keys omitted, with their probabilities ac- 

cording to our definition of random search trees. 

1 

Exercise 2.1. As Balanced as it Goes 

Let us define a balanced search tree for keys S as a search tree in Bs 

where for every node in the tree, the number of nodes in the left and 

right subtree differ by 1 at most. 

Provide a replacement system that defines all balanced search trees 

for a given key set S. 

Exercise 2.2. Consider the following attributed grammars (the only vari- 

able 1s A attributed by elements in N, the only terminal symbol is a): 

a uf n=0, and 
A ? ? 

(n) > A(n—1)A(n—1), otherwise.
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Figure 2.3: Grammars all over—an example from architecture, provided by 

[Havemann, Fellner, 2004]. 

A (the empty string), ifn=0, 

A(n) > ¢ a, uofn=1, and 

A(n—1)A(n—2), otherwise. 

For example, in the second grammar, we derive 

A(3) > A(2)A(1) S A(IJA(O)A(1) P28? aa = a? 

For both grammars characterize the word (string) generated by A(n) 

forne \. 

Exercise 2.3. Consider the attributed grammar with P the only variable, 

terminal symbols ( and ) and with rules P® — X (the empty string)
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and 

pm) PO) (pin) | Pi (pir) |... | pir (pO) forneéeN; 

(‘{’ here separates alternative rules in the grammar). 

What are the strings that can be derived from P(n), n€ N? How 

many such strings are there? 

Exercise 2.4. Leftist Tendency 

MEN, n> 2. We choose {A, B} Euar. (*), and then set C := min{A, B}. 

(1) Forié [n], determine Pr[C = ij. 

(2) Determine E[C-(n—C+1)] and compare with E[X-(n—X+1)] 

for xX Euar. In]. 

Exercise 2.5. Trees by Random Insertion 

SCR, finite. Show that af elements in S are inserted in an initially 

empty binary search tree in random order—u.a.r. from all permuta- 

tions of S—then the resulting distribution on Bs 1s the same as for 

random search trees as we defined it. 

Exercise 2.6. Uniformly Centered Triples 

néEN,n > 3. We choose a random triple ABC of numbers in [n] as 

follows. First choose B €uar. {2.n—1} and then A €xy.r. [B—1] and 

C Euar {B+1.n}. (That is, we have l <A<B<C<n.) 

(1) Given integers a, b, andc withl1<a<b<c<n, what is the 

probability Pr[ABC = abc]? 

(2) Is {A, B, C} uniformly distributed in (3) ? 

(3) Determine E[A], E[B], and E[C]. 

Exercise 2.7. A Random Tree? How random? 

Determine the probability of the following 

tree with 7 nodes. 

What ts the smallest, what is the largest 

possible probability of a tree with 7 nodes? 

Exercise 2.8. Possible Heights 

néN. What are the possible heights of a tree in Bn?



2.2. OVERALL (AND AVERAGE) DEPTH OF KEYS 23 

Exercise 2.9. Very Deep Nodes 

n €N. Show that the expected number of nodes of depth n—1 in 

a random search tree for n keys is a What is the probability that 

there is a node of depthn—1? 

Exercise 2.10. High Trees 

neéEN. Determine the number of trees of height n—2 in Bry. 

Exercise 2.11. Catalan Number 

neéN. Show that for |S|=n, 

1 2n 
Bs| = —— = a wail.) 

(the nth Catalan number). 

2.2 Overall (and Average) Depth of Keys 

Given some finite set S C R, the rank of x € Rin S is 

rk(x) =rks(x) =1+\yeSly<x}}. 

For example, the smallest element of S has rank 1. In general, ifx € S, then 

x is the rk(x)-smallest element in S. For a tree in B;, we abuse notation by 

writing rk(v) short for the rank of v’s key in S. 

For in € N, i < n, we denote by D!’) the random variable for the 

depth of the key of rank i in a random search tree for n keys. Our goal is 

to investigate the expected overall depth Ely ey DP in a random search 

tree; one nth of this quantity is the expected average depth of the nodes 

in a random search tree. 

Depth of Smallest Key. For a warm-up we first analyze E|D] . Let us write 

D,, short for D{?. We easily get E[D;] = 0, E[D2] = f 14 f -O= 5, and 

inspection of Figure 2.2 yields 

E[D3)=4-0+4-0+4-144-144-2=8. 

For the general case n € N, we can discriminate between the possible ranks 

of the root key and get 

EID,] = » E[D,|rk(root) =i] - Pr{rk(root) =i] . 

i = { 0, ifi=1, and =I/n 

~ | 14+ E[Di-1], otherwise. 
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Here we use the observation, that the depth of the smallest key is 0 if it 

sits in the root, or it is 1 plus the depth of the smallest key within the left 

subtree. 

Writing d, for E[D,], n € N, we get the recurrence 

d. — 0, ifn =1, and 

" ) £5240 + dit), otherwise. 
n 

For n € N, n> 3, we have 

nd, = (n—1)+d,;+d).+...4+d,2+d,1, and 

(n—Tdp-t = (n—2)4+d)4+d24+...4+dn2 

and thus by subtracting the two identities 

nd, — (n — dn =14+d,41 

& nd, =14+nd,_1 

1 
& d= a +d,_-1 forn> 3. (2.1) 

Together with d,; = 0 and d) = }, successive invocation of (2.1) yields 

] ] ] 
qd, = —-+d,1=-+-—+da,2=::: 

n n n-t1 

] ] ] 
= —+——4...4+=4+ d =H,-1 

n n-t1 3 0M 
1/2 

where 

nT 

] . ; 
Hy := +, forn EN, is the nth harmonic number. 

i 
i=l 

The harmonic numbers are considered the discrete analogue of the natural 

logarithm and they are omnipresent in discrete probabilistic analysis. We 

have an upper bound of 

Tm 1 
Hn <1 +] axe =1+ (inn—Int)=1+Inn forn > 1. 

1 

Also In(n+1) < H, for alln € N, and limy_... (Hn — Inn) =: y = 0.57721.., 

Euler’s constant.
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Knowing the expected depth of the smallest key, we might wonder next 

what the chances are that this depth is large (so-called tazl estimates). We 

can always apply Markov’s Inequality®: Here we have 

1 
Pr[D, >Alnn] < Pr[D, >A(Hn—1)] < = forAeR. 

>
 

Better tail estimates will follow. 

Overall Depth. For n € N, let X, = ) 7, DW, the random variable for the 

overall depth of all nodes in a random search tree for n keys. We have 

Xo = 0, X; = 0, and X; = 1, always. The complete list of search trees for 3 

keys lets us calculate E[X;] =4-4-(0+1+2)+4-(0+14+1)=8. 

For general n > 1, 

n 

E[X,] = E[X, |rk(root) =i]- Pr[rk(root) = iJ 

isl n—1+ BXi-1]+ BXn-i] =I/n 

1 nT 

= mote De EIX,1], 

  

since every node in the two subtrees attached to the root—altogether there 

are n—1 such nodes—increases its depth by 1, while there is no contribution 

from the root. With x, := E[X,], n € Ny, 

0, ifn = 0, and 
Xn = _ 

" n—1+4+2> J x, otherwise. 

For n > 2, we get 

NX, = n(n —1)+2(xo xy +... Xn + Xn-1), and 

(n—1)x,1 = (n—1)(n— 2) +2(x9 +x, +... + %n-2) 

  

5Markov’s Inequality: If X is a non-negative real random variable with finite expecta- 

tion, then Pr[X > AE[X]] < + for all A € R'. Or, equivalently, Pr[X >t] < EX! for all 

teR.
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and by subtraction 

NXy — (N— 1)xn-1 = 2(n — 1) + 2xn-1 

& nx, =2(n—1)4+(n+1)xx_1 now multiply by intwat) aa 

  & Xn _ (n—1) Xn-1 

2(n+1) n(n+1) 2n 

Y f = fr =In-1 

] ] 
& f, = — — —— + fa, forn> 2. 

n+1 n(n+1) 

Therefore 

f,=(—e4ty.t)-(—— +1 _5...44)++ 
e\n4 on 3 n(n+1) (n—I)n "2-3 WL 

where the first sum is Hy+1 — 3, and the second® sum can be turned into a 

telescoping sum (via the expansion amen = 1—— into partial fractions): 

yey (t- jet 
Kiit+l G\i itt) 2 n+l? 

Now, for n > 2, fy =Hay —2+—5 =H, —2+ 4; and 

  

Xn = 2(n+ 1)f, =2(n+ 1JH, —4n, 

and we see that the formula extends also to n = 0,1. 

Theorem 2.2. n © N. The expected overall depth of a random search tree 

for n keys is 2(n + 1)H, —4n = 2n Inn + O(n). 

Exercise 2.12. Harmonic Lower Bound 

Show that In(n+1) < Hy, for alln € N. 

Exercise 2.13. n € N. Determine the sum ye 17 TD" 
  

®A quick estimate observes that this second sum is upper bounded by ye = = O(1). 

Recall that ) °° = O(1) for each w ER, a> 1, while YL =o. 
a= i=li
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Exercise 2.14. Solving Recurrences 

Determine closed forms for the following recursively defined series: 

(1) ForneéN, 

a, = | ifn =1, and 
“T+ tyr ai, otherwise. 

(2) Forne€N, 

1, ifm =1, and 
bn = n—1 . 2+ 3 3) bi, otherwise. 

c= 0, ifn =0, and 

“ |} n-14+)2, 4", otherwise. 

(4) Forn EN, 

d. — 0, ifn=0, and 

"| 1422 3(-1)" 4d, otherwise. 

(5) For n EN, 

— 1, uf nm =0, and 

" ) J4+nen1, otherwise. 

Exercise 2.15. Number of Leaves 

n EN. Determine the expected number of leaves in a random search 

tree for n keys. 

Exercise 2.16. Depths of Leaves 

rn EN. Determine the expected overall depth of all leaves in a random 

search tree forn keys, 1.e. the expectation of the random variable Y, := 
n (i) 

Dictiis leaf Dy . 

Exercise 2.17. Random Decline 

neéEN. We consider the following random process: First we choose a 

number ki Euar. In], then a number kz Euar, [kj —1], .... In general, 

we choose ki+1 Cuar, [kj — 1] until we have reached ky = 1. 

(1) Determine E[N] (in terms of n), t.e. the expected number of num- 

bers chosen altogether. 

(2) Determine Elk; + ko +...4+ kyl.
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Exercise 2.18. Biased Random Walk to a Leaf 

neéN. In a random search tree for n keys we start in the root and 

perform a random walk to a leaf as follows: If the current node is a 

leaf, we stop. Otherwise, if the left subtree and right subtree of the 

current node contain i and j nodes, respectively, then we proceed to 

the left child with probability a to the right with probability a 

Determine the expected depth of the leaf reached (which ts the length 

of the random walk taken). 

Exercise 2.19. Leftist Root, Rightist Tree 

Here is an alternative probability distribution for Bs, S C R, finite. 

If |S| < 1, we choose the unique tree in Bs. Otherwise we choose a 

root with key x, where x = min{a,b} for {a,b} Cuar. (3) and produce 

recursively a left subtree for S“* and a right subtree for S**. We calla 

tree drawn from this distribution a rightist random search tree for S. 

(1) Determine the resulting distribution for By 2, and By 23) (t.e. calcu- 

late for each tree its probability). 

(2) Determine the expected depth of the largest key in a rightist random 

search tree for n keys. 

(3) Determine the expected overall depth of a rightist random search 

tree for n keys. 

Exercise 2.20. Rightist Search Tree Distribution 

Analogous to Lemma 2.1, determine a formula for the probability of 

a tree in Bs, SCR finite, to occur as a rightist random search tree. 

Exercise 2.21. Rightist Trees via Random Insertions 

Recall the definition of rightist random search trees. Now specify an 

insertion procedure for binary search trees, so that the search trees ob- 

tained from insertions in random order (u.a.r. from all permutations) 

ytelds the same distribution as the one for rightist random search trees. 

(Still insertion of an element should be doable in time linear in the 

depth of its final position.) 

Exercise 2.22. Shifted Markov 

BER. Show that if X is a real random variable with X > B and E[X] 

finite, then 

E(x] —B
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Hint: Apply Markov’s Inequality to X — B. 

2.3 Expected Height 

We wish to analyze the height of a random search tree for n keys. In 

other words, we study the random variable X, := max’, D™; recall that 

D® is the depth of the key of rank i. We recall that every binary tree 

with n nodes has height at least |logn|, so this is definitely also a lower 

bound for the expected height. Note, on the one hand, that the expected 

depth of Inn + O(1) we calculated for the node of rank 1 is smaller than 

logn (Inn = ee = 0.693... logn}. On the other hand, we know that the 

expected average depth is 2 Inn + O(1) = 1.386... logn which is a better 

lower bound for the expected height (the maximum of numbers is at least 

their average). When it gets to bound E[X,] from above, knowing the 

expected average depth is of no help (see Exercise 2.24). 

Determining E[X,] seems to be hard because of the max-operator in- 

volved. Instead, we use 

E[X,] < log E[2*] = log Ej DY 

  

< log | ee, (2.2) 
i=1, 1isleaf 

(the first inequality follows from Jensen’s Inequality’) and analyze Z, := 

D1 tis leaf 2»? instead, 
Zo = 0, Z; = 1, and Z, = 2, always. Once more we consult Figure 2.2 

for E[Z3] = 4. Enough of fiddling around with small values. For n > 2, 

E[Z,] = E[Z,, |rk(root) = i]- Pr[rk(root) =i] . 
i=l 

2( BZ4-1]+ BZn-il) =I/n 

  

Put z,:= E[Z,]. 

0, if n= 0, 

I= 1, ifm =1, and (2.3) 

4 Z%-1, otherwise. 

  

7 Jensen's Inequality: If f : R 3 R is a convex function, then f(E[X]} < EIf(X}]. A 

function f is convex, if for any x and y and 0 <A < 1], it holds that f(Ax + (1 —A)y) < 

Af(x) + (1 —A}f(y) (like this: L_— ). Examples are f(x) = x? and f(x} = 2*. Applying 

Jensen’s Inequality to the first shows E[x|? < E[X?] (which is equivalent to the non- 

negativity of the variance of a random variable).
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Consequently, for n > 3, nzy—(n—1)Z,_1 = 42n_1, and so nz, = (n+3)z,-1 
1 or (multiply by Sapna) 

Zn Zn—-1 Zr 1 
    

(n+3)(n+2)(n+1) (n+2)(n+ lyn 5-4-3 30° 

If we plug E[Z,] = insane aint) into (2.2), then we get an upper bound 

of 3logn+ O(1) = 4.328... Inn + O(1) for the expected height of a random 

search tree. So an asymptotic logarithmic upper bound is established. But 

what about the leading constant? 

If we go back to (2.2) we see that there is still the base ‘2’ to play with. 

Hunting for the Constant. For C € R, C > 1, we redefine Z, := Jo? sistear con, 

Similar to (2.2), we have E[X,] < log. E[Z,]. The recurrence for z, := 

E[Z,,] is the same as the one given in (2.3), except that ‘4’ gets replaced 

by 2C, which eventually leads to nz, = (n+ 2C —1)z,_; for n > 3. This 

yields 

2C—-1 2C—-1 2C—-1 2C—-1 
Jin—1 = (1+ \Q+ Jee (1+ 

n-—1 3 
        Zr = (1+ )zZ2 . 

Since z= C < (1+ 41), and 1+ x < e* for x € R, we obtain 

n 1 ay < ACD LET & QCD & g(2C—D Inn _ 4 2C-1 (2.4) 

for n > 3. Invoking (2.2) (in its adopted version with ‘C’ instead of ‘2’), 

this gives 

2C—-1 

Inc 

The bound attains its local extrema if 2nC —2+ 4 = 0 (obtained by 

setting the first derivative to 0), or, equivalently, if (€)7¢ =e. Note that 

for these values of C, we have ct = 2C. We write c for 2C to get the 

following theorem. 

  E[X,] < Inn for n > 3 and any real C > 1. 

Theorem 2.3. The expected height of a random search tree for n keys is 

upper bounded by clnn, where c = 4.311... 1s the unique value greater 

than 2 which satisfies (28)¢ =e. 

Surprisingly, the constant in the leading term is already tight, see note 

below.
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Tail Estimates. Let us conclude by pointing out that knowing a good esti- 

mate for E[C%] immediately gives a good tail estimate for X, via Markov’s 

inequality, namely 

Pr [Xn > tin n] = Pr [os 2 can] < Ctinn —_ 

2C —1—TlnC is minimized for C = 1/2. 

Theorem 2.4. n EN, TER. 

Pr[X, > tlnn] < n™ee-t 
y 

in particular Pr[X, > 2elnn] < 1, (2e = 5.435... ). 

Note 2.1 The upper bound in Theorem 2.3 was first established in [Robson, 1982]. 

The leading constant was shown to be tight in [Devroye, 1986] by an argument 

that is considerably more involved than the upper bound proof we have just seen. 

Meanwhile, the expected height of a random binary search tree for n keys is 

known to an amazing extent, [Reed, 2003], [Drmota, 2003]: It is 

clnn—c’Inlnn+O(1) 

for constants c = 4.311... and c’ = Te = 1.953... The variance is O({1).   

Exercise 2.23. Depth of Smallest Key Revisited 

DP neéN. Determine E . Use the result for a tail estimate for D"). 

    

Exercise 2.24. Maximum Expectation vs. Expected Maximum 

neEN. 

(1) Define random variables X, with E[X;] = O(1) for i € [n] and 

E[max?_, Xi] >n. 

(2) Define n mutually independent random variables X; with E[X;] = 

O(1) fori ¢€ [In] and Elmax?_, Xi] >n.
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2.4 Expected Depth of Individual Keys 

We want to analyze din = E|D\], the expected depth of the node holding 

the key of rank 1 in a random search tree for n keys. We could go along the 

by now usual path—setting up a two parameter recurrence for the d;,’s 

and solve it—, but that turns out to be tedious. So we change tools and 

employ indicator variables and linearity of expectation®. 

n €N. For i € [n] let us use ‘node i’ short for the node holding the 

key of rank i in a random search tree for n keys. Moreover, let us recall 

that a node u is an ancestor of node v in a rooted tree if u lies on the 

unique path from v to the root on the tree (including v). For i,j € [n], we 

introduce the indicator variable 

Al := [node j is ancestor of node i] 

(in a random search tree for n keys), i.e. 

A- 
1, if node j is ancestor of node i, and 

0, otherwise. 

We have Di? = FoF 54 A! and, by linearity of expectation, 

EDP} = > EA] (2.5) 
j-njA 

Since 

E|Ai] = Pr [Ai = 1 = Pr [node j is ancestor of node i] , 

all that is left to do is to determine these probabilities for the ancestor 

relations. 

Lemma 2.5. i,j © N. In a random search tree for n > max{i,j} keys 

1 

i—j) +17 

SLinearity of Expectation: If X and Y are random variables then E[AX] = AE[X] for all 

A € R (provided E[X] is finite, and E[X + Y] = E[X]+ EIY], without any assumption about 

independence of X and Y). 

Pr [node j is ancestor of node i] = 
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Proof. Ifi =j, the claim is trivially true. We assume i < j, the alternative 

being symmetric. 

Note that ifn = j—i+1, theni=1andj—=n. As we choose the key for 

the root of the tree, we see that the only chance for the key of rank j (now 

the largest key) to be an ancestor of the key of rank i (now the smallest 

key) is that the key of rank j is selected for the root. This happens with 

probability + which is indeed at 
If n > j—i+1 there are two possibilities. Hither we choose for the root 

a key with rank in {i..j}; then—conditioned on this—we have to choose 

the key of rank j for our event to occur, which happens with probability 

a sj: Otherwise, the keys of rank i and j, respectively, land in a common 

subtree; the keys get possibly new ranks inside the subtree (if it is the right 

subtree), but the difference between their respective ranks stays j—i. That 

  

is, by induction, again the probability for our event to occur is cu so the 

claim is established. 

A more formal set-up for this reasoning builds on the law of total prob- 

ability? and observes that 

Pr [Ai = 1] = Pr [Ai = 1|rk(root) € i..j}] - Pr [rk(root) € {i..j}] 

+Pr [Aj = 1|rk(root) ¢ {i..j}] - Pritk(root) ¢ {t..j} 

We have argued that 

‘ 1 i soa) . 
Pr [Ai = 1|rk(root) € {i.j}] = joni (directly), and 

. 1 J __ . . __ . . 

Pr [Ai = 1|rk(root) ¢ i..j}] = joist (by induction). 

Finally, Pr[rk(root) € {i..j}] + Prirk(root) ¢ {i..j}] = 1. 

It follows that for 1 <i<n, a E|Ai] =H,—land dt, E|Ai] = 

Hn++1 — 1 and thus, by (2.5) we have the desired expectations. 

Theorem 2.6. i,n. EN, i<n. Then E|DY] =Hi+ Haws —2< 2Inn. 

This is consistent with our findings for the expected depth of the small- 

est key in Section 2.2. Moreover, linearity of expectation lets us reestablish 
  

°Law of Total Probability: If A isan event, and Bi, Bz,..., By are events that partition 

the probability space then Pr[A] = ys, Pr[A|B;] - Pr[B;].
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Theorem 2.2 for the expectation of the overall depth: 

Soe} = ¥ e[oe! 
i=l isl 

= 2) Hi—2n 
i=l 
2((n+1)H, —n) — 2n 

= 2(n+1)H,—4n. 

E 

    

The third equality is left as an exercise. 

Exercise 2.25. Sum of Harmonic Numbers 

neéEN. Show >, Hi = (n+ 1H, — n= (n+ 1) (Hay — 1). 

Exercise 2.26. Size of Subtrees 

iE€N, nEN,i<n. Fora random search tree for n keys, let Wi" be 
the random variable for the number of nodes in the subtree rooted at 

the node of rank i (including the node itself). 

(1) Show that Ely ey wi] =n+ Ely ey De , where D® is the random 
variable for the depth of the node of rank i. 

(2) Show that €|W'!] =1+ E[D\] for all ic (nl. 

(3) Determine E|max{w\ \ie [n}]. 

Hint: Think before calculate! 

Exercise 2.27. Product of Subtree Sizes 

neéN, WY as in Exercise 2.26. Determine ENT wii). 

Exercise 2.28. n € N. 

(1) What ts the probability that the key of rank 1 ends up as a leaf in 

a random search tree for n keys. 

(2) Fori€ [nl], what ts the probability that the key of rank i ends up 

as a leaf in a random search tree for n keys. 

Exercise 2.29. Left to Right Minima 

Given a permutation (a1,42,...,4n) u.a.r. from all permutations of 

In], we call a; a left-to-right minimum if a; = min}_; a;. Calculate the 

expected number of left-to-right minima in two ways.
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(1) For i © [nl], let X, be the indicator variable for the event that a; 

(i.e. the ith number in the sequence) 1s a left-to-right minimum. And 

then consider >}, E[Xi]. 

Hint: Generate the random sequence backwards, i.e. first choose an €u.azr. [n], 

then dn—1 Eur. [n] \{an}, etc. 

(2) For k € [nl], let Y, be the indicator variable for the event that the 

number k is a left-to-right minimum. And then consider >, _, ElYxl. 

Exercise 2.30. In a graph G = (V,E), the vertices are randomly colored 

red and blue, each vertex obtains each color with equal probability 5, 

independently from the coloring of the other vertices. 

What is the expected number of edges whose endpoints have distinct 

colors? Express the answer in terms of m:=|E|. 

HINT: For each edge e € E, introduce an indicator variable X- for the event that 

e receives two distinct colors ... 

2.5 Quicksort 

Quicksort is a sorting algorithm, introduced in [Hoare, 1962], that needs 

O(nlogn) time on the average, performs well in practice, can be done in- 

place and is easy to implement. In this discussion we concentrate on the 

number of comparisons’? made by the algorithm’*?. 

Recall that for sorting a set S$, quicksort selects one x € S, called the 

pivot, and partitions S into S<*, {x}, and S°*. It then sorts $<“ and S°* 

recursively, and composes the sorted sequences in the right order. The 

choice of the pivot is crucial, and bad choices can cause the algorithm to 

do @(n*) comparisons. Here we consider randomized quicksort, where the 

pivot is chosen u.a.r. among all keys; see procedure’? quicksort()}*>. 

The comparisons occur in the splitting step, |S|— 1 of them. We let t,, 

nm. € N, stand for the expected number of comparisons made when sorting 
  

10\We mean here only comparisons between the elements we want to sort, not those 

inferred by while-loops and such like. 

11Quicksort’s favorable behavior in practice relies also on the small number of data 

movements (swaps) inferred; see also the note on median-of-three quicksort below. 

12The description doesn’t do full justice to quicksort, since the exact way of splitting S 

is crucial for its efficiency. 

136 is used for concatenation of sequences.
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function quicksort(S) 

S CR, finite. if S = @ then return (); 

POSTCONDITION: else 

returns S as a 

sequence sorted in 

increasing order. 

X Guar. 35 

split S into S<*, {x}, $°*; 

return quicksort ($<*) o (x) o quicksort(S~™); 
  

a set of n keys. Then tp = 0 and, for n > 1, 

nT nT 

] 2 
t, = n-1 +> (ta tial = nol +o to 

i=l i=l 

This is exactly the recurrence we obtained for the expected overall depth 

of random search trees (x, in Section 2.2), and we get the solution for t, 

for free. 

Theorem 2.7. n € N. The expected number of comparisons performed by 

quicksort() for sorting a set of n numbers is 2(n + 1)H, —4n. 

It is important to note the difference between (i) the average behavior 

of deterministic quicksort (that e.g. chooses the first element in the list as 

pivot element) and (ii) the expected behavior of randomized quicksort. The 

former, (i), assumes that the input is given in random order (according to 

the uniform distribution)—hence, there can be bad inputs (an almost sorted 

sequence is very bad for the aforementioned pivot choice). In contrast, 

for the randomized version (ii) there is nothing like a ‘bad’ input, the 

randomness is introduced internally by the algorithm without having to 

rely on a nice input distribution. 

We shouldn’t shrug off the fact that the expected number of comparisons 

of quicksort(} equals the overall depth of a random search tree. Given the 

structure of the procedure quicksort() and our definition of random search 

trees, the analogy becomes intuitively evident. In fact, during an execution 

of quicksort() we can build a binary search tree on the side, always making 

the pivot the root of a new subtree. In this way, every computation of 

quicksort(S) maps to a search tree B in Bs, and it is to show that the 

resulting distribution is the same as for random search trees. 

How can we read the number of comparisons from the search tree? 

Whenever a pivot element is chosen, it is compared to all the elements that
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eventually end up in its subtree (excluding itself). If w(v) is the number 

of nodes in the subtree rooted at node v, then the number of comparisons 

can be written as }_,(w/(v) — 1) (sum over all nodes v in the tree). Now we 

redistribute this sum as follows: For every node we open an ‘account’, and 

every node pays | to each account in its subtree (itself excluded), so node 

v pays w(v) — 1 altogether. The final balance on an account is the depth 

d(v) of its node v, as we can easily see (a node gets 1 from every node 

on the path to the root, excluding itself). Thus )_,d(v) = > ,(w(v) — 1), 

and these sums have to equal in expectation (to be precise, the random 

variables X = )_,d(v) and Y = }_,(w(v) — 1) are the same). In this way 

many properties of random search trees can be translated to properties of 

randomized quicksort (see, e.g., Exercises 2.31 and 2.33). 

NoTE 2.2 Median-of-three quicksort chooses the pivot in S as follows, assuming 

[S| > 3. First we sample a set of three numbers {a, b,c} w.a.r. in @), and then we 

select the pivot as the median among the three (the element of rank 2 in {a, b,c}). 

In this way the expected number of comparisons goes down to Bint JHn +O(n), 

[Sedgewick, Flajolet, 1996]. On the one hand, this looks like a speed-up by 14%. 

On the other hand, there is some extra overhead, and the expected number of 

data movements goes up (from roughly** znin n to nin n). Hence, whether this 

variant results in a speed-up in terms of CPU seconds, depends on implementation 

details, hardware, and the cost ratio between comparisons’> and data swaps. The 

variants median-of-(2t +1) for t > 2 are usually inferior. 

Exercise 2.31. How Many (Truly) Random Choices? 

If we call quicksort(} with a set of n keys, how many executions of the 

statement ‘x -uar. S;’ occur altogether? What is the expected number 

of executions of this statement with a set S of size at least 2? 

Exercise 2.32. Misplaced 

Quicksort’s efficiency relies not only on the number of comparisons 

(which ts actually larger than for merge sort), but also on the small 

number of keys that have to be moved. To that end analyze the ex- 

pected number of keys moved in a partitioning step, where the elements 
  

14Often the number of exchanges (swaps) of misplaced elements are counted; then these 

numbers have to be divided by two (see also Exercise 2.32). 

15For example there is a number type REAL in the LEDA package, 

[Mehlhorn, Naher, 1999] which holds—believe it or not—‘real’ real numbers (to 

some extent). For such numbers comparisons can be very expensive.
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are given in u.a.r. order and the first element 1s chosen for the pivot 

(average case for classical unrandomized quicksort): 

For a permutation 7m = (a1, d2,...,4n) of a set S CR of cardinality 

n, let mispl(7t) be the number of elements that have to be moved if aj 

goes to position rk(a,) and elements preceding this position have to be 

smaller than a;, and elements succeeding have to be larger. Formally, 

a1 misplaced a;/s, 1<j<rk(a1),misplaced 

mispl(7) := [rk(a;) A 1] +|{j € {2..(rk(a1) — 1)} | aj > ar} 

+ [rk(ar) 4 1] +\ € {(rk(a1) + 1)..n} | aj < ar}! , 

Ark(a,) Misplaced aj ‘s,j>rk(a1), misplaced 

  

  

Elements that have to be moved we call misplaced. For example, here 

are all permutations of {1,2,3} with misplaced elements underlined: 

123)213/312 1 
- 

132/231/321 E[M3] = 4(0+0+2+34242)=3
. 

Determine E[M,], M, the random variable for the number of misplaced 

elements in a u.a.r. permutation of n elements. 

Exercise 2.33. Leftist Pivot 

Consider the following variant of randomized quicksort. Whenever 

we have to choose a pivot element for a set S, |S| > 2, we select a 

pair {A,B} Euaz. (5), and let min{A,B} be this pivot element. What 

as the expected number of comparisons of this variant? Note that the 

“other” element in {A,B} does not need to be compared with the pivot 

element once more, so still altogether |S|— 1 comparisons suffice for 

the splitting. 

Exercise 2.34. Leftist Pivot and Stack Size 

For those who know about the issue of the stack used in resolving 

recursion (basically, whenever we make a call, we have to store the 

state of the procedure in order to have this information ready as we 

return from the call). Argue why the leftist-pivot variant of quicksort 

(as described in Exercise 2.33) 1s favorable in the sense that the size 

of the stack tends to be smaller there. 

Exercise 2.35. Depth and Subtree Size Again 

n € WN. Consider a set S of n keys, say S = [n] and consider a bi- 

nary search tree that evolves from inserting the elements in S in order
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Qt, Q2,...,An, u.a.r. from all n! orderings of S (which, we know, gener- 

ates the distribution of random search trees as defined in Section 2.1). 

For i,j € In], let A‘) be the indicator variable for the event that the 

node holding the jth key, aj, tn tnsertion order 1s an ancestor of the 

node holding the ith key, a;, inserted. 

(1) Determine E[AM)] for alli,j € In] and use it to determine E|wo, 
W) the size of the subtree of the jth key inserted. 

(2) Determine E|D®], D” the depth of the ith key inserted, i € [n]. 

HINT: First determine E[AG)] and then show that E[A] = E[AG)] for 

all i> j. 

REMARK: )j', (E[wo] — 1) =y?r, E[D®)| is just another way of calculating 

the expected overall depth of a random search tree. Also compare E[D™] to the 

answers to Exercises 2.18 and 2.19 (2). 

Exercise 2.36. i,j,n EN, i<j <n. What is the probability that the ran- 

domized procedure quicksort() applied to a set of n numbers compares 

the element of rank i with the element of rank j? 

2.6 Quickselect 

Given a set S of keys, suppose we want to know the middle element (me- 

dian), or more generally, the k-smallest element in S (ie. the element of 

rank k in S). Nothing easier than that: We sort S and access the kth 

element in the sorted sequence. That works in expected O(nlogn) time, 

n := |S|, with randomized quicksort, say. But can we do it faster?—after 

all that can obviously be done in linear time for the smallest or the largest 

element. 

In fact, a moment of reflection shows that if all we care about is the el- 

ement of a given rank k, in each call to quicksort(} one of the two recursive 

calls is irrelevant (eventually, when the pivot is the element we are look- 

ing for, even both)—an insight that immediately suggests the procedure 

quickselect(, ). 

For the analysis we let t(k,n), 1 <k <n, denote the expected number 

of comparisons among elements in S inferred by a call quickselect(k, S) with 

[S| = n. We are by now experienced enough to quickly derive t(1,1) = 0
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function quickselect (k, S) 

X Hua. 5 

split S into S<*, x, S?*; 
S CR, finite. k € Z. 

=" an 0 (S41 (ie. 0 =rks(x)) 

  

PRECONDITION: fk <f th 
1<k< (sl. if k < € then 

POSTCONDITION: return quickselect (k, $<*); 

returns the element elseif k = ¢ then 

of rank k in S. return x; 

else (i.e. k > £) 

return quickselect (k — 0, S*™); 

and, for n > 2, 

1 k-1 n 

tkyn) =n—1+— [Semana +) t(k,e— »| , 
f=1 f=k+1 

but solving this recurrence looks scary, if not hopeless. 

So, in order to get at least an idea of the asymptotics, we retreat to the 

following estimate, where we omit the parameter k, set t,, = maxj_, t(k,n), 

and assume for the recursive call always the size of the larger of the two 

sets’® S<* and $°*. That is, t; = 0 and, for n > 2, 

1 nT 

th < n—I1+ n d tmax{e—1,n—) . 

In a fit of optimism we conjecture that t, < cn for some positive real 

constant c. t; = 0 serves as a safe basis for induction, so all we need to 

ensure is that n— 1+ 14) ¢,c-max{—1,n~— £} < cn or, equivalently, 

  

nT 

—1 ] 
y_max{t—1,n-o< * w+-n. 
= c c 

The sum can be computed to be 

n 342 1 : sn — 57, ifn even, and 
> max{?—1,n—-Q= 4 2 7 1 otherwi 
fol 4 TV 5 TL a otherwise. 

Therefore, the proof by induction indeed goes through with c = 4. 
  

16Here we assume, without proof, that ty is monotone in n.
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Theorem 2.8. k,n EN, 1<k <n. The expected number of comparisons 

(among input numbers) performed by quickselect(,) for determining the 

element of rank k in a set of n numbers is at most 4n. 

Exercise 2.37. Max und... 

1 € No. Prove 

“ 3,21 d 
> _ max{i—1,n—i}= gh gh ifn even, an 

isl zw —5n—q, otherwise. 

and determine > _;_, min{i— 1,n — i}. 

Exercise 2.38. “Quickselect” Smallest Element 

Determine the expected number of comparisons performed by quickse- 

lect for finding the smallest element (case k = 1) in a set of n numbers. 

(Not'’ that we recommend quickselect for finding the smallest number. ) 

Exercise 2.39. Quickselect vs. Random Search Trees 

Let Xn be the random variable for the number of comparisons made 

by quickselect when searching for the element of rank k in a set of n 

numbers. Define a random variable on random search trees with the 

same distribution. 

Exercise 2.40. Number of Recursive Calls 

What is the expected number of recursive calls made by quickselect 

when searching for the kth in n numbers? 

Exercise 2.41. Comparisons with Object of Desire 

When we use quickselect to search for the element of rank k in a set 

of n numbers, what 1s the expected number of comparisons the number 

of rank k ts involved in? (Note that, in fact, no number takes part in 

more comparisons than the kth number does.) 

Exercise 2.42. Expected Amount of Work Left 

kn EN, k <n. In search for the kth element in a set S of n numbers, 

quickselect chooses a random number in S and either luckily holds the 

result or recurses on a subset S' of S. Determine the expectation of 

|S'| in terms of k and n (where we define S':=0, if the pivot has rank 

k). For which k, in terms of n, 1s this expectation the smallest? 
  

17Note: “Not”, not “Note”!
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Exercise 2.43. Decreasing Process 

Given n EN, a random process generates a sequence of integers n = 

Xo, X1,--+)Xn-1,Xn = 0. All we know is that there is a constant 0 < 

c <1 such that if X; > 1 then Xiv1 < X; and E[Xi.1|X, =x] <c-x, and 

if X; = 0 then the process stops (i.e. N =i). What can you say about 

E[N], the expected length of the process, and E[yS, Xi] ? In particular, 

can you prove that the later expectation 1s at most linear in n? 

2.¢ Randomized Search Trees 

“If you could use only one data structure, which one would you choose? A hash 

table? While it supports the basic insert, find, and remove operations, it doesn't 

keep the elements in sorted order. Therefore, it can't efficiently perform some 

tasks that are frequently encountered, such as finding the minimum element or 

producing an ordered list of all elements. Stefan Nilsson writes in his 

article “Treaps in Java” in Dr. Dobb’s Journal, 267 (July 1997) 40-44, and 

he continues: “What would you require of this ideal, sole structure? It should 

be easy to use (and preferably easy to implement); it should be able to hold an 

” 

object of any class (as long as we provide a method for comparing objects); it 

should be thread safe. 

The randomized search tree (‘treap’), devised by C.R. Aragon and R. Seidel 

and described in ‘Randomized Search Trees’ (Algorithmica, 16(4/5):464-497, 

1996), fulfills all of these requirements, and it offers the functionality of a general- 

purpose sorting routine, priority queue, hash table, stack, or standard queue. 
” 

Treaps. ‘Treap’ is a coined word that stands for a symbiosis of a binary 

search tree and a heap. It is defined for sets Q CR x R, with the elements 

in Q called ztems. The first component of an item x is its key, key(x), 

and the second component is its priority, prio(x). Suppose that no two 

keys in Q are the same, nor are two priorities the same. Then a treap on 

Q is a binary tree with nodes labeled by Q which is a search tree with 

respect to the keys, and a min-heap with respect to the priorities (i.e. if 

x is parent of y then prio(x) < prio(y)). The fact that every set of items 

Q allows a treap, and this treap is actually unique, becomes evident from 

the alternative grammar-style definition (Q“* = {y € Q | key(y) < key(x)}
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and analogously for Q**): 

i, if Q =0, and 

AX, . for x € Q with 
prio(x)=minycg prio(y), otherwise. 

This view also reveals that if, for a set of keys, the priorities are chosen 

independently and u.a.r. from the interval [0, 1) then the resulting treap is a 

random search tree’® for the keys of its items. Therefore, if we maintain for 

a set of keys a treap, where for every newly inserted key a random priority is 

chosen, then this treap is a random search tree for the keys, independently 

from the insertion order. And we can assume all the wonderful properties 

like expected (and high probability) logarithmic height of the tree. Remains 

the issue of maintenance of a treap under insertions and deletions. 

Insertions, Rotations. To insert a new item x in a treap, we first proceed as 

in a standard binary search tree and insert the new item as a leaf according 

to its key key(x). Next we have to reinstall the heap property: As long as 

x has a smaller priority than its parent item y we perform a rotation at y 

which makes'® y a child of x (see Figure 2.5; you know rotations well as 

rebalancing tool for AVL-tree and such like). This will let x eventually end 

up at its proper place in the treap. 

The running time is proportional to the depth of the new item as a 

leaf before reinstalling the heap property, plus the number of rotations 

necessary to get the new item to its place. Both is bounded by the height 

of the tree and thus expected O(logn). 

However, since rotations are much more costly than just walking down 

a tree in a search, let us take a closer look at them right away. How many 
  

18Qnce more, what do we mean by a statement like “this 7s a random search tree”? We 

mean that in this way the same distribution on the binary search trees for the given set 

of keys is defined. 

191f x is left child, rotate right at y, if x is right child, rotate left.
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Figure 2.4: Treap for items with real priorities from [0,1) in binary rep- 

resentation: (1,.0100..), (4,.1010..), (7,.0001..), (10,.1011..), (15, .1010...), 

(17, .1101..), (19, .O111..). In the treap the real priorities are displayed only 

to the extent necessary for its specification. The shaded parts indicate the 

root’s left subtree’s right spine and the root’s right subtree’s left spine. 

rotations do we need? We can read the number of such rotations from the 

repaired treap without knowing the priorities (and thus without knowing 

which rotations were indeed performed). In order to quantify this, we 

define the left (right) spine of a subtree rooted at node v as the sequence 

of nodes on the path from v to the smallest (largest, respectively) key in the 

subtree (for example, in Figure 2.4, the subtree rooted at the node holding 

key 19 has a left spine of length 3 and a right spine of length 1). Now 

associate with a node—hold your breath, but see Figure 2.5—the sum of 

the lengths of the right spine in the left child’s subtree and of the left spine 

in the right child’s subtree. This number increases by exactly one with 

every rotation for the node with the new item, and thus this quantity at 

its final position specifies the necessary number of rotations. In Figure 2.4 

for the root holding key 7, the right spine of the left subtree has length 2 

(with keys 1 and 4), the left spine of the right subtree has length 3 (with 

keys 19, 15, and 10). Consequently, if this was the last node inserted it
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/ /\ rotate left subtree at x 

Figure 2.5: Rotations in a tree. (The shaded parts indicate x’s respective 

right spine in its left subtree and left spine in its right subtree. Note that 

the change is restricted to gain/loss of a single node, namely y, in these 

spines.) 

took 2+ 3=5 rotations to move it to its place. 

The expected number of rotations is less than 2, no matter how large 

the tree is. This is, at least at first glance, quite surprising, so let us see a 

proof of this. 

Lemma 2.9. n € N, j € In]. In a random binary search tree for n keys, 

the right spine of the left subtree of the node of rank j has expected 

length 1 — i and the left spine of the right subtree has expected length 
] 

n—j+t" 
  

Proof. Consider the nodes on the right spine of the left subtree of node j. 

We observe that all keys on this spine have rank smaller than j. The nodes 

are characterized as those nodes which are ancestors of node j — 1 but not 

common ancestors of j} and j}— 1. Hence, if we define 

Cf, := [node k is ancestor of nodes i and j] 

then the number of nodes on this spine is ))_| (AK, — CK ,,). But for 
k <i<j, Ck, = Af, since if node k has node j > k in its subtree then it 

has all nodes i € {k..j} in its subtree (see Exercise 2.46). We conclude 

j-l 

ae A¥)) => (Ela) ~ Ela‘) 
k=1 k=1 

7 d aaa i 

The claim for the left spine o of the right subtree follows by symmetry. 

j-l 

     



46 CHAPTER 2. RANDOM(IZED) SEARCH TREES 

Deletions, Splits, Joins. A deletion in a treap is an inverse insertion. First 

we rotate the item to be removed down the tree until it is a leaf, then we 

remove it. When we push the item down the tree, we always have a choice 

of a right or left rotation—which one to select is decided by the priorities. 

If the left child has the smallest priority of the children, then this child 

should become the new root of the subtree and we rotate right. Otherwise, 

we rotate left. Analysis is the same as for the insertion. 

For a given pivot value s, a split of a treap for items Q generates two 

treaps for items Q“* and items Q** (we assume that s is not among the 

keys of the treap). An implementation is easy to describe. We first insert 

an item with key s and priority —oo, this item ends up as the root. Then 

we remove the root. Its left subtree is a treap for Q<‘, the right subtree for 

Q*s. The time is again bounded by the height of the tree—the expected 

number of rotations is not constant in this case, though. 

The join operation takes two treaps with one holding keys all of which 

are smaller than that of the other one. This can be seen as an inverse split. 

That is, we generate a new root with an in-between key s and priority —co, 

attach the treap with the smaller keys as a left subtree and the other as a 

right subtree, and then we delete the root item. 

Theorem 2.10. In a randomized search tree (a treap with priorities inde- 

pendently and u.a.r. from [0,1)) operations find, insert, delete, split 

and join can be performed in expected time O(logn), n the number of 

keys currently stored. The expected number of rotations necessary for 

an insertion or a deletion 1s always less than 2. 

Random Real Numbers? ‘You may be worried that the priorities are real 

numbers. On the one hand, this was very convenient since in this way the 

probability of getting the same priority twice is 0. For all practical pur- 

poses we can choose the priorities from a sufficiently large ordered domain. 

{0..23? — 1} will be by far enough for most practical purposes, even more 

so since most common random number generators, once initiated, generate 

a permutation of their domain without repetition. 

However, we can simulate the (for us) necessary functionality of random 

real numbers on a digital computer (an exercise in the spirit of object- 

oriented programming). After all, all we need is to compare these num- 

bers. For that we recall that a real number in [0,1) in binary can be
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encoded by a sequence (bi)icen € {0, 1}% \{0, 1}*{1}", representing”® the num- 

ber )_*°, b, 27. A random real number is internally represented by a finite 

(random) sequence (b;)!_,, ¢ the current length of the representation. If 

two such numbers have to be compared, we check whether the available 

bits suffice?! to take such a decision. Otherwise we produce extra random 

bits for the two numbers which extend these sequences until a decision is 

possible. 

In fact, Figure 2.4 indicates such a representation. For example the 

items for keys 1 and 19 have the same representation .01... for their prior- 

ities. If these priorities had to be compared” (for example, if we remove 

key 7 we have to know which priority is smaller for deciding which way 

to rotate), then we produce one extra random bit for each and append it 

to the sequence. If the two bits are the same, we repeat. So, for example 

after the comparison, the representations may be .0101... for 1 and .0100... 

for 19. 

If we want to compare two such partially represented random real num- 

bers and we need extra bits, an expected number of O(1) of them suffice 

(the exact expected number depends on the difference of their lengths; it 

is never more than 4, see Exercise 2.45). Now note that for an insertion 

and deletion, we need the random bits only to decide whether we have to 

rotate or which way to rotate, and in expectation there are only a constant 

number of such decisions to make, hence altogether only a constant number 

of bits suffice for these operations (the find-operation needs none). 

Norte 2.3 The original source for randomized search trees is [Aragon, Seidel, 1996], 

where we read about the underlying treaps that “...[Vuillemin, 1980] introduced 

the same data structure and called it ‘Cartesian trees’. The term ‘treap’ was first used 

for a different data structure by [McCreight, 1985], who later abandoned it for the 

more mundane ‘priority search tree’. 

[Pugh, 1990] had proposed earlier another randomized scheme for the dictio- 
  

20In order to make this representation unique, we have to exclude the sequences 

that eventually finish in an infinite sequence of Js. For that recall that e.g. binary 

0.0111111... = 0.100000000..... The set {0,1}*{1}" stands for these sequences we ex- 

clude. However, such sequences occur with probability 0 in random {0, 1}-sequences, so 

we justifiably ignore them in the further discussion. 

21Two sequences o and t of lengths i and j, respectively, i < j, allow a decision, if the 

prefix of t of length i differs from o. 

22 Admittedly, the example is special since even different length representations may 

force extra bits until a decision can be made; .11... and .1101..., say.
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nary problem called skip ltsts. A different kind of randomized search tree based on 

random rebalancing was later described by [Martinéz, Roura, 1998] with basically 

identical performance characteristics. 

Exercise 2.44. Rotations 

How many rotations are necessary for deleting the item with key 11 

in the following treap? 

  

Exercise 2.45. Extra Bits for Comparison 

If two partial representations o and t of random real numbers in [0, 1) 

with i and j bits, respectively, i<j, do not allow a comparison, what 

as the expected number of extra random bits that have to be generated 

until such a comparison 1s possible? 

Exercise 2.46. Ranks in Subtrees 

Consider the set of the ranks of the keys in a subtree of a binary 

search tree. Show that this set 1s of the form {a..b}, where a 1s the 

smallest rank in the subtree and b 1s the largest rank in the subtree. 

Exercise 2.47. Common Ancestors 

For a random search tree on n nodes and i,j,k € In], i<j, define the
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random indicator variable 

Cf, := [node k is common ancestor of nodes i and j] 

(where “node k” stands for “node holding key of rank k”, etc.). 

Determine Pr [ck = 1] for i,j,k € Inj, i<j. 

HINT: You will have to discriminate the cases k<i<j,i<k<j, andi<j<k. 

Exercise 2.48. Paths between Nodes 

In a tree there 1s always a unique path between any two nodes. 

neéEN, i,j € [In]. Determine the expected length of the path between 

the nodes holding the keys of rank i andj in a random search tree for 

n keys. 

Exercise 2.49. Random Bits 

Show that in the proceeding described above for successively generating 

the bits of random priorities, the expected number of random bits to 

be generated for an insertion is at most 12, and for a deletion it 1s at 

most 4.
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