
Chapter 4 

Linear Programming 

Chapter by J. Matougek! 

This is mostly a digest from the book Understanding and Using Lin- 

ear Programming by MatouSek and Gartner, to which we refer for a more 

detailed presentation and additional material. The part about the ellipsoid 

method is extended compared to the book, in a way partially inspired by 

lecture notes by Petr Kolman. Details of the ellipsoid method missing in 

our treatment can be found, e.g., in 

M. Grotschel, L. Lovasz, L. Schrijver: Geometric Algorithms 

and Combinatorial Optimization, 2nd edition, Springer, Hei- 

delberg 1994. 

4.1 Basic setting 

Linear programming is one of the most powerful tools in algorithm design, 

and it is extremely important in practice, especially for solving optimization 

problems. 

The word “programming” here does not refer to computer program- 

ming; rather, it comes from military slang of the 1950s, where it was used 

for planning logistics or deployment of men. 

  

'Thanks to Malte Milatz, May Szedl4k, and Manuel Wettstein for proofreading and 

very valuable comments. 
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Terminology of linear programs. We begin with a very simple linear program- 

ming problem (or linear program for short): 

Maximize x;+x2 

subject to x; >0 

X2 = 0 

Xz — X1 < ] 

X1 + 6x2 < 15 

4x — X2 < 10. 

Here x; and x2 are variables, which are supposed to attain real values. 

For this linear program we can easily draw a picture. The set {x € R*: 

X2—X; < 1} is the half-plane lying below the line x. = x; +1, and similarly, 

each of the remaining four inequalities defines a half-plane. The set of all 

vectors satisfying the five constraints simultaneously is a convex polygon: 

z2 

   

  

21+ 622 < 15 

zr > 0 

Wg,   Aan >0 

Le 

i 4a, —22 < 10 

Which point of this polygon maximizes the value of x; + x2? To see this, 

we consider a line perpendicular to vector (1,1), drawn by the arrow, and 

we think of translating that line in the direction of the arrow. Then we are 

seeking a point where the moving line intersects our polygon for the last 

time. 

In a general linear program we want to find a vector x* € R" maximizing 

(or minimizing) the value of a given linear function among all vectors x € 

R" that satisfy a given system of linear equations and non-strict linear 

inequalities. The linear function to be maximized, or sometimes minimized, 

is called the objective function. It has the form c'x = cyx;+---+CnXn, where 

c € R" is a given vector. The linear equations and inequalities in the linear



4.1. BASIC SETTING 79 

program are called the constraints. It is customary to denote the number of 

constraints by m. 

We stress that only non-strict linear inequalities are considered; strict 

inequalities, such as x; +x 2 <1, are not allowed in a linear program. The 

reason is that, on the one hand, strict inequalities would hardly bring any 

additional power for modeling problems as linear programs, and on the 

other hand, they would destroy a nice theory concerning the existence of 

solutions of linear programs (which will be presented in the next sections). 

Every vector x € R™ satisfying all constraints of a given linear program 

is a feasible solution. Each x* € R" that gives the maximum possible value of 

c'x among all feasible x is called an optimal solution, or optimum for short. In 

our linear program above we have n = 2, m=5, and c = (1,1). The only 

optimal solution is the vector (3,2), while, for instance, (2, 3) is a feasible 

solution that is not optimal. 

A linear program may in general have a single optimal solution, or 

infinitely many optimal solutions, or none at all. 

Exercise 4.1. (a) Modify the objective function of the linear program 

above so that there are infinitely many optimal solutions. 

(b) Add a constraint to the linear program above so that there are 

no feasible solutions (such a linear program is called infeasible). 

(c) Remove some of the constraints from the linear program above 

so that the objective function can attain arbitrarily large values, and 

hence there is no optimal solution (such a linear program is called un- 

bounded). What ts the smallest possible number of removed constraints? 

Matrix notation. The constraints in a general linear program can be both 

equations and inequalities. Often it is useful to convert linear programs 

into certain special forms, for example with no equations. These special 

forms may have various favorable properties, as we will see later, and they 

are also easier to write down in a compact notation using matrices and 

vectors. 

For example, let us consider a linear program that has only inequalities 

with the < sign (assuming all variables on the left) and such that the 

objective function is maximized. In a way similar to the notation Ax =b 

for a system of linear equations in linear algebra, such a linear program can 

be written as follows: 

maximize c'x subject to Ax <b,
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where A is a given mxn real matrix and c € R", b € R™ are given vectors. 

The relation < holds for two vectors of equal length if it holds componen- 

twise. 

We claim that an arbitrary linear program can be converted to this form. 

Indeed, we replace each equation by two opposite inequalities, and where 

needed, we reverse the direction of the inequalities by changing the signs. 

If the original linear program asked for minimization of c'x, we replace 

this by maximizing —c'x. Note that such transformation may increase the 

number of constraints (at most twice). 

The next important exercise asks for a somewhat more complicated 

transformation into another special form. 

Exercise 4.2. Show that every linear program can also be converted into 

the following equational form? : 

maximize c'x subject to Ax=b, x > 0. 

That 1s, all variables are required to be nonnegative, and besides this, 

there are only equality constraints. What is the maximum increase in 

the number of variables and in the number of constraints in such a 

transformation? Hint: introduce new nonnegative variables to convert 

tinequalitzes into equations, and express an unconstrained variable x € 

R as the difference of two nonnegative variables x', x". 

On solving linear programs. One of the key pieces of knowledge about linear 

programming is this: 

  

A linear program is efficiently solvable, both in theory and in practice. 

    
  

e In practice, a number of software packages are available. They can 

handle inputs with thousands, and sometimes even millions, of vari- 

ables and constraints. 

e In theory, algorithms have been developed that provably solve each 

linear program in time bounded by a certain polynomial function of 

the input size. The input size is measured as the total number of bits 
  

2In most of the literature this is called standard form; here we prefer the more descriptive 

name.
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needed to write down all coefficients in the objective function and in 

all the constraints. 

These two statements summarize the results of long and strenuous re- 

search, and efficient methods for linear programming are not simple. In 

this course we will not consider practically efficient algorithms, but we will 

explain a theoretical algorithm achieving polynomial running time. 

4.2 Direct applications 

Linear programming is a wonderful tool. But in order to use it, one first 

has to start suspecting that the considered computational problem might 

be expressible by a linear program, and then one has to really express it 

that way. Here we demonstrate a few tricks for reformulating problems 

that do not look like linear programs at first sight. 

Once we have a suitable linear programming formulation (a “model” 

in the mathematical programming parlance), we can employ general algo- 

rithms. From a programmer’s point of view this is very convenient, since 

it suffices to input the appropriate objective function and constraints into 

general-purpose software. 

If efficiency is a concern, this need not be the end of the story. Many 

problems have special features, and sometimes specialized algorithms are 

known, or can be constructed, that solve such problems substantially faster 

than a general approach based on linear programming. But even for such 

problems, starting with a linear programming formulation makes sense: for 

fast prototyping, case studies, and deciding whether developing problem- 

specific software is worth the effort. 

& 

The diet problem and such. Historically, in the late 1940s, the first large- 

scale linear program solved was the determination of an adequate diet of 

least cost: which foods should be combined and in what amounts, so that 

the required amounts of all essential nutrients are satisfied and the daily 

ration is the cheapest possible? The linear program had 77 variables and 

9 constraints, and its solution using hand-operated desk calculators took 

approximately 120 man-days. (This was a great achievement; the compu- 

tation used the newly developed and highly non-obvious simplex method 

of George Dantzig, which remains among the most effective linear program- 

ming algorithms up until today.)
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Later on, when George Dantzig had already gained access to an elec- 

tronic computer, he tried to optimize his own diet as well. The optimal 

solution of the first linear program that he constructed recommended daily 

consumption of several liters of vinegar. When he removed vinegar from 

the next input, he obtained approximately 200 bouillon cubes as the basis 

of the daily diet. This story, whose truth is not entirely out of the ques- 

tion, does not diminish the power of linear programming in any way, but 

it illustrates how difficult it is to capture mathematically all the important 

aspects of real-life problems. 

Still, from a mathematical point of view, the dietary problem is straight- 

forward. For every possible food ingredient, say carrot or vinegar, we in- 

troduce one nonnegative variable. For every nutrient, such as protein or 

vitamin A, we have one inequality constraint expressing the minimum con- 

sumption. And finally, the coefficients of the objective function are the 

unit prices of the ingredients. 

Exercise 4.3. (a) Pick several nutrients, say proteins, carbohydrates, and 

sodium. Also choose a small number of specific food ingredients. Look 

up the recommended daily allowances for these nutrients, prices of 

the ingredients, and their nutrient contents. Write down the price- 

minimizing linear program, and see what optimal solution it gives (use 

some computer package, such as Matlab). Does the daily dose look like 

something one could live on? 

(b) (For the more adventurous ones) Extend the nutrients and in- 

gredients lists to make them more realistic, solve the linear program, 

and again see how realistic it looks. Iterate until you run out of energy 

(or food?). 

There are many applications of linear programming in industry, agricul- 

ture, services, etc. that from an abstract point of view are variations of the 

diet problem and do not introduce substantially new mathematical tricks. 

It may still be challenging to design good models for real-life problems of 

this kind, but the challenges are not mathematical. 

We will proceed with less obvious applications. 

Ice cream all year round. An ice cream manufacturer needs to set up a 

production plan for the next year, based on the following prediction of 

monthly sales:
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A simple solution would be to produce “just in time,” meaning that 

all the ice cream needed in each month is also produced in that month. 

However, a change in the produced amount has significant costs: temporary 

workers have to be hired or laid off, machines have to be adjusted, and so 

on. 

Another simple solution might be a completely “flat” production sched- 

ule, with the same amount produced every month. Some thought reveals 

that such a schedule need not be feasible if we want to end up with zero 

surplus at the end of the year. But even if it is feasible, it need not be ideal 

either, since storing ice cream incurs a nontrivial cost. 

We want a compromise minimizing the total cost resulting both from 

changes in production and from storage of surpluses. 

Let us denote the demand in month i by d; > 0 (in tons). Then we 

introduce a nonnegative variable x; for the production in month i and 

another nonnegative variable s;, for the total surplus in store at the end of 

month i. To meet the demand in month i, we may use the production in 

month i and the surplus at the end of month i—1: 

x +si1>d, fori=1,2,...,12. 

The quantity x; + si_; — d; is exactly the surplus after month i, and thus 

we have 

H&+Si1-S= A fori = 1,2,...,12. 

Assuming that initially there is no surplus, we set so = O (if we took the 

production history into account, spo would be the surplus at the end of the
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previous year). We also set s}2 = 0, unless we want to plan for another 

year. 

Among all nonnegative solutions of these equations and inequalities, 

we are looking for one that minimizes the total cost. Let us assume that 

changing the production by 1 ton from month i— 1 to month i costs €50, 

and that storage facilities for 1 ton of ice cream cost € 20 per month. Then 

the total cost is expressed by the function 

12 12 

50) i —x%a1+20) si, 
i=l i=l 

where we set x) = O (again, history can easily be taken into account). 

Unfortunately, this cost function is not linear. Fortunately, there is a 

simple but important trick that allows us to make it linear, at the price of 

introducing extra variables. 

The change in production is either an increase or a decrease. Let us 

introduce a nonnegative variable y; for the increase from month i—1 to 

month i, and a nonnegative variable z; for the decrease. Then 

%— HA SY 4 

A production schedule of minimum total cost is given by an optimal solu- 

tion of the following linear program: 

Minimize 50) 7, y+50> 72, n+20>1, si 
subject to x,+ si1—s, = d; fori=1,2,...,12 

%— M1 =yi—Z fori=1,2,...,12 

Xo =0 

So =0 

82 =0 

Xiy Sty Yi, 2 > O fori =1,2,...,12. 

To see that an optimal solution (s*,y*,z*) of this linear program indeed 

defines a schedule, we need to note that one of yf and zj has to be zero for 

all i, for otherwise, we could decrease both and obtain a better solution. 

This implies that yf +zf = |x; —xi_1| equals the change in production from 

month i— 1 to month i, as required. 

The pattern of this example is quite general, and many problems of 

optimal control can be solved via linear programming in a similar manner.
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Fitting a line. Suppose that we have some data points (x1, y1),---, (Xn) Yn); 

and we would like to fit a line approximating the dependence of y on x: 

  

How can one formulate mathematically that a given line “best fits” the 

points? There is no unique way, and several different criteria are commonly 

used for line fitting in practice. 

The most popular one is the method of least squares, which for given 

points (x1, y1),.--, (%n) Un) seeks a line with equation y = ax+b minimizing 

the expression 
nt 

> (axi+b-yi)*. (4.1) 
i=1 

In words, for every point we take its vertical distance from the line, square 

it, and sum these “squares of errors.” 

This method need not always be the most suitable. For instance, if 

a small number of exceptional points are measured with very large error, 

they can influence the resulting line a great deal. An alternative method, 

less sensitive to a small number of “outliers,” is to minimize the sum of 

absolute values of all errors: 

n 

> lax: + b—yil. (4.2) 
i= 

By a trick similar to the one we saw in the ice-cream example, this appar- 

ently nonlinear optimization problem can be captured by a linear program: 

minimize e;+e2,+---+e, 

subject to e, > ax; tb—y fori=1,2,...,n 

e, > —(axi+b—yi) fori=1,2,...,n. 

The variables are a, b, and e1,e2,...,@n (while x1,...,x, and Yq,---,Un 

are given numbers). Each e; is an auxiliary variable standing for the error
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at the ith point. The constraints guarantee that 

ej > max( ar + b—yi, (ax; + b — wi) = |ax, +b —yil. 

In an optimal solution each of these inequalities has to be satisfied with 

equality, for otherwise, we could decrease the corresponding e;. Thus, an 

optimal solution yields a line minimizing the expression (4.2). 

In the picture above, the solid line has been fitted by this method, while 

the dotted line has been obtained using least squares. 

Cutting paper rolls. A paper mill manufactures rolls of paper of a standard 

width of 3 meters. But customers want to buy paper rolls of shorter width, 

and the mill has to cut such rolls from the 3 m rolls. One 3 m roll can be 

cut, for instance, into two rolls 93 cm wide, one roll of width 108 cm, and 

a rest of 6 cm (which goes to waste). 

Let us consider an order of 

e 97 rolls of width 135 cm, 

e 610 rolls of width 108 cm, 

e 395 rolls of width 93 cm, and 

e 211 rolls of width 42 cm. 

What is the smallest number of 3 m rolls that have to be cut in order to 

satisfy this order, and how should they be cut? 

In order to engage linear programming one has to be generous in intro- 

ducing variables. We write down all of the requested widths: 135 cm, 108 

cm, 93 cm, and 42 cm. Then we list all possibilities of cutting a 3 m paper 

roll into rolls of some of these widths (we need to consider only possibilities 

for which the wasted piece is shorter than 42 cm): 

Pl: 2x 135 P?7: 108+93+2 x 42 

P2: 135+ 108 +42 P8: 108+4 x 42 

P3: 135+93 +42 P9: 3x93 

P4: 13543 x 42 P10: 2x 9342 x 42 

Pb: 2x 108+2 x 42 Pll: 93+4 x 42 

P6: 108+2 x 93 P12: 7x 42
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For each possibility Pj on the list we introduce a variable x, > 0 representing 

the number of rolls cut according to that possibility. We want to minimize 

the total number of rolls cut, i.e., yy x;, in such a way that the customers 

are satisfied. For example, to satisfy the demand for 395 rolls of width 93 

cm we require 

X3 +2x%6 + X7 + 3x9 +2x19 + X11 > 395. 

For each of the widths we obtain one constraint. 

For a more complicated order, the list of possibilities would most likely 

be produced by computer. We would be in a quite typical situation in 

which a linear program is not entered “by hand,” but rather is generated 

by some computer program. 

In our specific problem, an optimal solution of the resulting linear pro- 

gram has x; = 48.5, x5 = 206.25, xg = 197.5, and all other components 0. 

In order to cut 48.5 rolls according to the possibility Pl, one has to 

unwind half of a roll. Here we need more information about the technical 

possibilities of the paper mill: Is making thinner rolls and cutting them 

technically and economically feasible? If yes, we have solved the problem 

optimally. If not, we have to work further and somehow take into account 

the restriction that only feasible solutions of the linear program with znte- 

gral x, are of interest. This is not at all easy in general, and we will say a 

little more about this issue later. 

4.3 Geometry of linear programs 

Convex sets and polyhedra. We recall several geometric notions. 

e A set C C R” is convex if C contains the segment connecting every 

two of its points. That is, for every x,y € C and every t € [0,1] we 

have (1—t)x+ty€ C. 

e A hyperplane in R™ is an affine subspace of dimension n—1. In other 

words, it is a set of the form {x € R™ : ayx; + 2X2 +--+: + anXy = db}, 

where aj, d2,...,Q, are not all 0. 

e A (closed) half-space in R” is a set of the form {x € R™: ayx; + a2xX2+ 

+++ + AnXn < b}, again with at least one a; nonzero.
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e A convex polyhedron in R™ is the intersection of finitely many closed 

half-spaces.* 

The reader probably knows convex polygons in the plane and convex 

polytopes in R’, such as the Platonic solids. A convex polytope in R™ 

can be defined as a bounded convex polyhedron (i.e., one contained in a 

sufficiently large ball). Arbitrary convex polyhedra need not be bounded; 

an example is a single half-space. 

The intersection of a collection of convex sets is clearly convex, and a 

half-space is convex. Hence a convex polyhedron is indeed a convex set. 

The set of all feasible solutions of a linear program is, more or less by 

definition, a convex polyhedron in R”. 

Basic feasible solutions. Let us first consider an arbitrary linear program, 

with both equality and inequality constraints, whose feasible set is a convex 

polyhedron P C R™. A basic feasible solution of such a linear program is a 

feasible solution x for which n linearly independent constraints hold with 

equality. 

This probably needs some explanation. First, an equality constraint 

holds with equality for every feasible solution, while an inequality con- 

straint may either hold with equality, or with a strict inequality (and the 

latter case does not count in the definition of a basic feasible solution). Sec- 

ond, with every constraint a1x;+---+,x,?b, where ? is one of =, <, or >, 

we associate the vector a = (aj,..., dy) of the coefficients on the left-hand 

side, and linear independence of constraints means linear independence of 

the corresponding vectors. 

We note that for every n-tuple of linearly independent constraints, there 

is at most one point satisfying all of them with equality (this is basic linear 

algebra). Consequently, each linear program has only finitely many basic 

feasible solutions, namely, at most (™). The following figure shows an 

example with m = 4,n = 2. There are () = 6 points where two (linearly 

independent) constraints hold with equality. 4 of them (the black ones) are 

feasible and are therefore basic feasible solutions. 

  

3All of R® also counts as a convex polyhedron; it can be regarded as the intersection 

of an empty set of half-spaces.
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We remark that, geometrically, basic feasible solutions correspond to 

vertices of the polyhedron P (we will not prove that). A point v € P 

is called a vertex if there is a linear function whose maximum over P is 

attained in v and nowhere else. That is, there is c € R™ with c'v > c'x for 

allx € P\ {v}. 

An arbitrary linear program need not have any basic feasible solutions 

at all (consider a single inequality constraint in R*). However, as we will 

see, linear programs in equational form (see Exercise 4.2) have “enough” 

basic feasible solutions. 

Theorem 4,1. Let us consider a linear program in equational form 

mazimize c'x subject to Ax =b,x > 0, 

and let P C R™ be the convex polyhedron of all feasible solutions. If 

P40 and the objective function c'x is bounded from above on P, then 

there exists a basic feasible solution that 1s optimal, and in particular, 

the linear program has an optimal solution. 

In particular, the theorem tells us that an optimal solution may fail to 

exist only for obvious reasons: either if there are no feasible solutions at 

all, or if the objective function is unbounded from above. 

Proof. The theorem is a consequence of the following statement: 

If the objective function is bounded from above, then for every 

feasible solution x there exists a basic feasible solution X with 

c'& > clx.
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How does this statement imply the theorem? If the linear program is 

feasible and bounded, then according to the statement, for every feasible 

solution there is a basic feasible solution with the same or larger objective 

function. Since there are only finitely many basic feasible solutions, at 

least one of them has to give the maximum value of the objective function, 

which means that it is optimal. 

In order to prove the statement, we maintain a candidate x for the 

required basic feasible solution (initially X = x, the feasible solution we 

start with). The plan is as follows: if n linearly independent constraints 

hold with equality at x already, then xX is a basic feasible solution, and we 

are done. Otherwise, the constraints holding with equality at & actually 

hold with equality in an affine subspace of dimension at least 1, containing 

x. Within this subspace, we will move x into a suitable direction win sucha 

way that (a) the objective function value does not decrease, and (b) a new 

inequality constraint eventually holds with equality. From there, we repeat 

the process until we cannot move anymore, meaning that x has become a 

basic feasible solution: 

  

Formally, we define an index set 

K={j € {1,2,...,n}:% > O}. 

Let Ax be the submatrix of the m x n matrix A consisting of the columns 

indexed by K. We distinguish two cases, depending on whether the columns 

of Ax are linearly independent. 

If they are linearly independent (in particular, |K| < m then), we claim 

that % is a basic feasible solution. Indeed, if we form an (m+n -— |K|) x 

n matrix B by appending n — |K| new rows e,j ¢ K, to A, then B has
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[K|+-n—|K| = n linearly independent columns and therefore also n linearly 

independent rows.* Moreover, the corresponding constraints (for the new 

rows, these are x; > 0,j ¢ K) hold with equality at x. 

So let us suppose that the columns of Ax are linearly dependent, which 

means that there is a nonzero |K|-component vector v such that Axv = 0. 

We extend v by zeros in positions outside K to an n-component vector w; 

thus Aw = Axv = 0. 

Let us assume for a moment that w satisfies the following two conditions 

(we will show later why we can assume this): 

(i) clw> 0. 

(ii) There exists j € K with w, < 0. 

For a real number t > 0 let us consider the vector x(t) = *+ tw. We show 

that for some suitable t; > O the vector x(t;) is a feasible solution with more 

zero components than x (more inequalities that hold with equality at this 

points). At the same time, c'x(t;) = c'%+ tic'w > c'x9 + t)c'w > c'xo, and 

so we can replace our candidate x by x(t,). As the number of components 

is bounded, this process must eventually stop in which case x is a basic 

feasible solution. 

Concerning the existence of t;, we argue as follows: We have Ax(t) =b 

for all t since Ax(t) = AX+ tAw = Ax = b, because x is feasible. Moreover, 

for t = 0 the vector x(0) = x has all components from K strictly positive 

and all other components zero (and latter stay zero for all t). For the jth 

component of x(t) we have x(t); = % + tw,, and if w; < 0 as in condition 
(ii), we get x(t); < 0 for all sufficiently large t > 0. If we begin with 

t = 0 and let t grow, then those x(t); with w, < 0 are decreasing, and at 

a certain moment t the first of these decreasing components reaches 0. At 

this moment, we have found the desired t = ty. 
Now what do we do if the vector w fails to satisfy condition (i) or (ii)? 

If c'w = 0, then (i) holds and (ii) can be recovered by changing the sign 

of w (since w #0). So we assume c'w # 0, and again after a possible sign 

change we can achieve c'w > 0 and thus (i). Now if (ii) fails, we must have 

w > 0. But this means that x(t) = *+ tw > 0 for all t > 0, and hence 

all such x(t) are feasible. The value of the objective function for x(t) is 
  

4e; is the j-th unit vector.
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c'x(t) = c'X+ tc'w, and it tends to infinity as t + oo. Hence the linear 

program is unbounded. This concludes the proof. O 

4.4 Bounds on solutions 

Encoding size. For algorithmic purposes, we will consider only linear pro- 

grams in which all of the coefficients are rational numbers (so that they 

have a finite encoding, unlike arbitrary real numbers). In order to speak of 

theoretically efficient, i.e., polynomial, algorithms, we also need to measure 

the size of a given linear program. 

In a nutshell, the size of a linear program is the total number of bits 

needed to write all of the coefficients. More formally, first we define the 

encoding size of an integer z as (z) := [log,(lz/+1)]+ 1 (this is the length 
of the standard binary encoding plus one bit for the sign). Immediate but 

useful facts are (xy) < (x) + (y) and |x| < 2, 

For a rational number r, we write it as r = 2 with p and q rela- 

tively prime and set (r) := (p) + (q); for a rational matrix A we have 
(A) = Do) Dj (ay), and similarly for a rational vector. Then for a lin- 

ear program L, the encoding size is the sum of encoding sizes of the vectors 

and matrices involved. For example, if L is of the form “maximize c'x 

subject to Ax <b,” then (L) := (A) + (b) + (c). 

Bounds on optimal solutions. The following bounds are very useful in many 

algorithmic considerations concerning linear programming. 

Theorem 4.2. If a linear program L with rational coefficients has a fea- 

sible solution, then it also has a rational feasible solution X with (%&) = 

O((L)) for every j (consequently, X 1s contained in the cube [—K, K]" 

with K< 2) ). A similar statement holds for optimal solutions. 

The constant in the O(.) notation in the above theorem could be made 

explicit, but we prefer not to distract the reader’s attention with more 

detailed calculations. We also note that actually (x,) = O((L) — (c)), where 
c is the coefficient vector of the objective function; this will be immediate 

from the proof. 

For the proof of the theorem, we need bounds on the encoding size of 

the determinant of a rational matrix. 

Lemma 4.3. For a rational n x n matriz A we have (det A) = O((A)).
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Proof. Let us write ay = py/qy with py, qy relatively prime for alli,j. By 

definition, (A) = ),,((py) + (qy)). Let N =[],; px,D = I]; 44. Using 
the above fact (xy) < (x) + (y), we get (N) < (A) and (D) < (A). 

We have the usual formula detA = ), sign(x) []#) ain) with n! 
terms. As the denominator J];_, qin) of []i_, dix) divides D for all 7, we 
can write det A in the form 

sign(7)N det(A) = mesa Sign(7™) Nx 3 (™)Ne 

where Nx = D[ Jy Pinty/ TTizs Gini) < DN is an integer. Hence, 

(det A) < om sign(7)Nxz) + (D) < (n!DN) + (D). 

Using (xy) < (x) + (y) again along with (N), (D) < (A), we conclude that 

(det A) < O(nlogn + (A)) = O((A)), 

since (A) > n?. oO 

Proof of Theorem 4.2. It suffices to prove the statement concerning op- 

timal solutions, since if we take the zero objective function, every feasible 

solution is optimal. 

First we assume that the given linear program is in equational form. 

Since it has an optimal solution, it also has a basic optimal solution x € 

R" according to Theorem 4.1. By definition, x attains some n linearly 

independent constraints with equality. 

Hence xX is the solution of a system of n linear equations of the form 

Ax = b, where A is an n x n nonsingular matrix; each of the equations is 

either one of the equations of the system Ax = b, or of the form x, = 0 for 

some j. 

We recall from linear algebra that, by Cramer’s rule, 

det A; 
deta” =1,2,...,n, R= 

where A; is obtained from A by replacing the jth column with b. So using 

Lemma 4.3, (%) = O((A;) + (A)) = O((L) — (©) as needed. 
Finally, if the given linear program is not in equational form, we trans- 

form it to equational form as in Exercise 4.2. This increases the encoding
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size at most by a constant factor. Passing from a feasible solution of the 

transformed linear program to a feasible solution of the original linear pro- 

gram does not increase the size of the components, as the reader may want 

to check (returning to the solution of Exercise 4.2), and similarly for opti- 

mal solutions. This concludes the proof. O 

4.5 Duality and the Farkas lemma 

Duality is arguably the most important theoretical result about linear pro- 

grams. We begin the exposition with a simpler version of the duality of 

linear programming, called the Farkas lemma. 

4.5.1 The Farkas lemma 

Let us say that we have completed a linear algebra homework, one of finding 

a solution of a system Ax = b of linear equations. How can we convince 

people that the homework is solved? If we have a solution x, then we just 

write it down, and everyone equipped with a calculator can check that it 

actually satisfies the given equations. 

But what if the system has no solution? One way is to write down a 

linear combination of the equations that is obviously inconsistent. Namely, 

if A is an mx n matrix and we exhibit a vector y € R™ such that y'A = 0" 

and y'b = 1, then it is clear that Ax = b has no solution. Indeed, if 

we multiply the ith equation in the system by y; and add the resulting 

equations together, we obtain the obviously unsolvable equation O'x = 1. 

Easy linear algebra shows that unsolvability of a system of linear equa- 

tions can always be certified in this way. 

Exercise 4.4. Prove that a system Ax =b of lanear equations is unsolvable 

af and only if there is y with A'y =0 and b'y = 1. 

Thus, for the decision problem “does a given system of linear equa- 

tions have a solution” there are easy certificates both for the YES and 

NO answers. (The reader probably knows that NP-complete problems are 

asymmetric in this respect—with polynomial-time certificates for YES but, 

according to a generally shared belief, with no polynomial-time certificates 

for NO.)
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The Farkas lemma provides easy certificates for unsolvability of systems 

of linear inequalities. 

Lemma 4.4 (Farkas lemma I). A system Ax < b of linear inequalities is 

unsolvable if and only if there exists y > 0 such that Aly = O and 

b'y <0. 

Be sure to realize why y as in the lemma certifies unsolvability! 

Similar results, also commonly called Farkas lemmas, are available for 

certifying the nonexistence of a nonnegative solution of a system of linear 

equations, as well of a nonnegative solution of a system of linear inequalities: 

Lemma 4.5 (Farkas lemma II and III). A system Ax =b of linear equations 

has no nonnegative solution if and only if there exists y such that 

Aly > 0 and bly <0. 

A system Ax <b of linear inequalities has no nonnegative solution 

af and only if there exists y > 0 such that A'y > 0 and b'y <0. 

Exercise 4.5. (a) Explain why the y as in the last lemma indeed certify 

the nonexistence of a nonnegative solution. 

(b) Prove that all of the three variants of the Farkas lemma above, 

I-III, are mutually equivalent. (Or do at least one of the implications. ) 

You may want to look to Exercise 4.2 for inspiration. 

On proofs of the Farkas lemma. As a fundamental result, the Farkas lemma 

has a number of proofs. Some of them are quite intuitive, and some of 

them are rather short, but so far we have not succeeded in finding a proof 

in the intersection of these two classes. 

We will indicate a geometric meaning and proof of Farkas lemma I], 

omitting a proof of an intuitive but nontrivial fact. So we have am xn 

matrix A and a vector b € R™, and we seek a nonnegative x with Ax =b. 

We interpret the columns of A as vectors aj,...,a, € R™. Let C = 

{xyay +--+ + Xan ft X1y)-++3Xn > O} be the set of all nonnegative linear 

combinations of these vectors. Geometrically, C is the convex cone generated 

by aj;,...,@,; an alternative description is that we first replace each a, by 

an infinite ray in the direction of a,, and then we take the convex hull of 

these rays. 

The system Ax = b has a nonnegative solution precisely ifb € C. Farkas 

lemma II then asserts that if b g C, then there exists y with y'a, > 0 for
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allj and y'b < 0. Geometrically, this means that all the a; lie on one side 

of the hyperplane h := {x € R™: y'x = O}, and b lies (strictly) on the other 

side. 

Thus, geometrically, the claim of Farkas lemma II amounts to a result 

about separating a point from a convex cone by a hyperplane: every b ¢ C 

can be strictly separated from C by a hyperplane passing through the origin. 

This has an “easy” geometric proof: let z be the point of C closest to b; 

then y = z—b works, as is indicated in the picture. 

  

The problem with this is in proving rigorously that the desired nearest 

point z exists (once we know that, it is not hard to complete the proof 

rigorously). One needs to show that the cone C is a closed set (then a 

standard compactness argument can be applied), which is not really hard, 

but we do not know of any short proof. 

For the purposes of this course, we will stay with this semi-formal treat- 

ment, referring to the MatouSek—Gartner linear programming book or other 

sources for rigorous proofs of the Farkas lemma. 

4.5.2 The strong duality theorem 

Now we go back to linear programs, and this time we consider a linear 

program of the form 

maximize c'x subject to Ax < b and x > 0. (P) 

Similar to the Farkas lemma, we can also interpret the duality of linear 

programming as the existence of easy certificates for NO answers—but 

what is the question? Well, we ask, “Is the optimal value of (P) greater or 

equal to some given number y?” 

A YES answer has an obvious certificate, namely, a feasible solution xX 

with c'X > -y. How can we hope to certify NO? 

Suppose that we can make a nonnegative linear combination of the 

rows of the matrix A in which every coefficient is at least as large as the
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corresponding coefficient of c; i.e., we have a vector y > O with y'A > c. 

Then the corresponding linear combination of the right-hand sides, i.e., 

y'b, is an upper bound for the maximum of c'x. Indeed, we have c'x < 

(y'A)x = y"(Ax) < yb, where the first inequality relies on x > O and the 

second on y > 0. 

Now the task of finding the best y as above, i.e., one that gives the 

smallest upper bound on c'x, can be written as a linear program: 

minimize b'y subject to A'y > c andy > 0. (D) 

This is called the dual of the linear program (P). 

By the previous considerations, we see that the minimum of (D) is 

always at least as large as the maximum of (P)—this (easy) result is called 

the weak duality theorem of linear programming. 

The strong duality theorem tells us that, actually, the minimum of (D) 

is equal to the maximum of (P), assuming (P) feasible and bounded. In 

this respect, the optimum of (D) is a perfect NO certificate. 

Here is a formal statement of the duality theorem, which also discusses 

what happens if one of (P), (D) is infeasible or unbounded. 

Theorem 4.6 (Strong duality theorem). For the linear programs (P) and 
(D) as above, exactly one of the following possibilities occurs: 

1. Neither (P) nor (D) has a feasible solution. 

2. (P) ts unbounded and (D) has no feasible solution. 

8. (P) has no feasible solution and (D) 1s unbounded. 

4. Both (P) and (D) have a feasible solution. Then both have an 
optimal solution, and tf x* 1s an optimal solution of (P) and y* 

1s an optimal solution of (D), then 

c'x* =b'y*, 

Exercise 4.6. Find an example of a specific linear program (P) for each 

of the cases in the theorem. 

The duality theorem easily implies several significant min-max theorems 

in combinatorics and optimization, such as the maxflow—mincut theorem,
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Konig’s theorem about matchings in bipartite graphs, Hall’s marriage the- 

orem, and others. Often it also yields, with no extra effort, a more general 

result involving weights, which sometimes does not follow from the usual 

combinatorial proof. 

The duality theorem is valid for each linear program, not only for one of 

the form (P); we have only to construct the dual linear program properly. 

To this end, we can transform the given linear program to the form (P), 

and then the dual linear program has the form (D). The result can often 

be simplified; for example, the difference of two nonnegative variables can 

be replaced by a single unbounded variable (one that may attain all real 

values). 

Simpler than doing this again and again is to use a general recipe for 

dualizing linear programs, as detailed, e.g., in the MatouSek—Gartner book. 

There are several proofs of the duality theorem, some of them using the 

Farkas lemma and some not. 

Proof of strong duality. Weak duality makes sure that if (P) is unbounded, 

then (D) must be infeasible, and if (D) is unbounded, then (P) must be 

infeasible. So it suffices to show that if (P) is feasible and bounded, then so 

is (D), and their optimal values coincide. (We also need the same statement 

with the role of (P) and (D) interchanged, but this follows immediately, 

since it can be easily checked that (P) is the dual of (D).) 
Let x* be an optimum of (P) and let y = c'x* be the optimum value. 

The system of inequalities 

Ax <b, cx >yte (4.3) 

has a nonnegative solution for e = 0, but it has no nonnegative solution for 

e>0. 

Let us fix e > 0. Farkas lemma III tells us that, because of the unsolv- 

ability of (4.3), there is a nonnegative vector y = (u,z) such that A'u > ze 

and b'u < z(y +). (If you do not believe derive this carefully; start by 

writing the matrix of (4.3) down explicitly.) We also have bu > zy, for 

otherwise, y would witness nonexistence of a nonnegative solution of (4.3) 

for e =0, but we assume that there is a nonnegative solution. 

In order that the inequalities b'u < z(y +e) and b'u > zy both hold, 
we must have z > 0. Let us set v:= lu. Then we get 

Alv>c, bv<yte.
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In other words, v is a feasible solution of (D), with the value of the objective 

function smaller than y + e. 

By the weak duality theorem, every feasible solution of (D) has value of 

the objective function at least y. Hence (D) is a feasible and bounded linear 

program, and so we know that it has an optimal solution y* (Theorem 4.1). 

Its value b'y* is between y and y+e for every e > 0, andthusitequalsy. O 

4.6 The ellipsoid method 

The ellipsoid method was invented in 1970 by Shor, Judin, and Nemirovski 

as an algorithm for certain nonlinear optimization problems. In 1979 

Leonid Khachyian outlined, in a short note, how linear programs can be 

solved by this method in provably polynomial time. 

The world press made a sensation out of this since the journalists con- 

torted the result and presented it as an unprecedented breakthrough in 

practical computational methods (giving the Soviets a technological edge 

over the West...). However, the ellipsoid method has never been inter- 

esting for the practice of linear programming—Khachyian’s discovery was 

indeed extremely significant, but for the theory of computational complex- 

ity. It solved an open problem that many people had attacked in vain for 

many years. The solution was conceptually utterly different from previous 

approaches, which were mostly variations of the simplex method. 

What is meant by a polynomial algorithm? We say that an algorithm is a 

polynomial algorithm for linear programming if a polynomial p(x) exists such 

that for every linear program L with rational coefficients the algorithm finds 

a correct solution in at most p((L)) steps. 

The steps are counted in some of the usual models of computation, for 

example, as steps of a Turing machine (usually the chosen computational 

model is not crucial; whatever is polynomial in one model is also polynomial 

in other reasonable models). We stress that a single arithmetic operation 

is not counted as a single step here! We count as steps operations with 

single bits, and hence, e.g., addition of two k-bit integers requires at least 

k steps. 

It may be useful to mention that the usual algorithms for Gaussian 

elimination, as taught in basic linear algebra, are not polynomial. As is 

well known, Gaussian elimination for an n x n matrix uses at most O(n?)
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arithmetic operations, but unless special provisions are made in the imple- 

mentation, the intermediate values appearing in the computation may have 

exponentially many digits, even if the original matrix has only small integer 

entries. (All of this concerns eract computations, while many implementa- 

tions use floating-point arithmetic and hence the numbers are continually 

rounded. But then there is no guarantee that the results are correct.) 

Polynomial-time versions of Gaussian elimination are known, but they are 

quite sophisticated. 

Other linear-programming algorithms. As we have remarked, the ellipsoid 

method is not practical for actually solving large linear programs. There are 

basically two classes of methods used in practice, each with many variations. 

The szmplezx method is the original approach of Dantzig, but with many 

sophisticated improvements. Its basic strategy is to go along the edges of 

the polyhedron of feasible solutions, from one basic feasible solution to 

another, in such a way that the value of the objective function improves in 

each step. 

Interior point methods start in the interior of the feasible polyhedron 

and proceed towards an optimal solution, in discrete steps but guided by 

certain smooth, analytically defined curve inside the polyhedron (but again, 

there are many versions and some do not quite conform this scheme). 

Some of the interior-point methods are claimed to be polynomial in the 

literature, but it seems hard to find a clean proof of polynomiality for the 

Turing machine model. 

In practice, both simplex and interior-point methods may be competi- 

tive, depending on the structure of the linear program, but for very large 

(and usually sparse) linear programs, interior point seems to be the winner. 

4.6.1 The relaxed problem and the algorithm 

The ellipsoid method does not directly solve a linear program, but rather it 

seeks a solution of a system of linear inequalities Ax < b, if one exists—this 

is called the feasibility problem. 

A polynomial algorithm for the feasibility problem allows us to solve a 

general linear program in polynomial time. An elegant way of seeing this 

is via the strong duality theorem: We transform the linear program to the 

form “maximize c'x subject to Ax < b, x > 0.” We set up the following
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system of inequalities with vectors x and y: 

Ax <b, x>0, c'x>b'y, Aly>c, y>0. (4.4) 

By strong duality, this system is feasible exactly if the original linear pro- 

gram has an optimal solution, and if (x, ¥) is a feasible solution of (4.4), 

then X is an optimum of the original linear program. 

Exercise 4.7. Work out a different way of using an algorithm for the fea- 

sibility problem for solving linear programs, based on the idea of binary 

search for the optimum value. Theorem 4.2 1s useful for analyzing the 

number of steps of the binary search. 

The relaxed feasibility problem. Let P = {x € R™: Ax < b} be the polyhedron 

consisting of all solutions of the considered system of inequalities; we thus 

want to find a point y € P, or conclude that P = 0. 

For a simpler exposition, we will first explain an algorithm for the fol- 

lowing relaxed problem, in which we make an additional assumption about 

P, and we also allow the algorithm to answer incorrectly if P is too flat in 

a sense specified next. 

Problem 4.7 (Relaxed feasibility problem). Together with the matriz A and 

vector b we are given rational numbers R>e>0. We assume that the 

polyhedron P 1s contained in the ball B(O,R) centered at 0 with radius R. 

IfP contains a ball of radius e, then the algorithm has to return a point 

ye P. However, if P contains no ball of radius e, then the algorithm 

may return either some y € P, or the answer NO SOLUTION. 

The ellipsoid method algorithm for Problem 4.7 generates a sequence 

of ellipsoids Eo, Ey,..., Ey, each of them guaranteed to contain all of P. A 

rough outline is as follows: 

1. Set k = 0 and Ey = B(0, R). 

2. Let s, be the center of the current ellipsoid Ex. If s, satisfies all 

inequalities of the system Ax < b, return s, as a solution; stop. 

3. Otherwise, choose an inequality of the system that is violated by s,. 

Let it be the ith inequality; so we have a/s, > b;. Compute Ex; as 

an ellipsoid containing the set E, {x € R™: a/x < b} and such that
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the vol Ex,1, the volume of Ex,1, is substantially smaller than vol E, 

(Lemma 4.8 below gives a specific version of “substantially smaller” ). 

Here is a picture: 

  

4. If volE,,; is smaller than the volume of a ball of radius e, return 

NO SOLUTION; stop. Otherwise, increase k by 1 and continue with 

Step 2. 

A crucial geometric fact, captured by the following lemma, is that the 

ellipsoid E,,;; as in Step 3 always exists. 

Lemma 4.8. Let E be an n-dimensional ellipsoid in R" with centers, and 

let H be a closed half-space whose interior does not contain s. Then 

there exists an ellapsoid E', given by an explicit formula, that contains 

EN H and satisfies 

volE’<p-volE, where p=oe(n):=e /2"), 

The lemma will be proved in Section 4.6.2. 

Assuming the lemma, it is easy to bound the number of iterations of 

the above algorithm. By the lemma we have vol E, < p* vol B(0, R). Since 

the volume of an n-dimensional ball is proportional to the nth power of the 

radius, for k satisfying R- e/"@™42) < ¢ the volume of E, is smaller than 
that of a ball of radius e. Such k provides an upper bound of [n{2n + 2) 

In(R/e)] on the maximum number of iterations. So the algorithm solves 

Problem 4.7 in a number of iterations at most polynomial in n+ log(R/e). 

In order to obtain a polynomial algorithm for linear programming from 

this, besides proving Lemma 4.8, we still need to overcome the following 

two issues.
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(A) Show that the iterations in the above algorithm can be implemented 

in polynomial time. 

(B) Show that, given a polynomial algorithm for Problem 4.7, one can ob- 

tain a polynomial algorithm for deciding the feasibility of an arbitrary 

system Ax < b. 

A rigorous treatment of all of (A) would be too lengthy (and boring) for 

our purposes; we will thus omit a part of it. As a consequence, we will not 

be able to present a full proof of polynomiality of the ellipsoid method for 

linear programming, but no significant ideas will be left out—the missing 

part is laborious but routine. 

4.6.2 Geometry of ellipsoids 

The goal here is proving Lemma 4.8, but first we recall some basic facts 

about ellipsoids. 

A two-dimensional ellipsoid is an ellipse plus its interior. An ellipse in 

axial position in the plane has equation s + ue = 1, where a,b are the 

lengths of the semi-axes. An arbitrary ellipse can be obtained from one in 

axial position by rotation and translation. 

An n-dimensional ellipsoid could be introduced analogously, but for us, 

it seems cleaner to introduce ellipsoids as images of balls under nonsingular 

affine maps. Let 

B™ = {x € R™:x'x < I} 

be the n-dimensional ball of unit radius centered at 0. Then an n-dimensional 

ellipsoid is a set of the form 

E={Mx+s:x€ B", 

where M is a nonsingular nxn matrix and s € R™ is a vector. 

The mapping x }» Mx-+s is a composition of a linear mapping and 

a translation, and it is called an affine map. Since, as is taught in linear 

algebra, a linear map x +» Mx maps a set of volume v to a set of volume 

v-|det M|, and since a translation does not change volume, we have vol E = 

|det M| vol B™.
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By manipulating the definition we can describe the ellipsoid E by an 

inequality: 

E={y © R": M'(y—s) € B™} 

={y © R": (y—s)"(M')'™M '[y—s) < T} 

={y € R™: (y—s)'Q '[y—s) < 1}, (4.5) 

where we have set Q = MM. It is well known and easy to check that 

such a Q is a positive definite matrix, that is, a symmetric square matrix 

satisfying x'Qx > O for all nonzero vectors x. Conversely, from matrix 

theory it is known that each positive definite matrix Q can be factored as 

Q = MM for some nonsingular square matrix M. Therefore, an equivalent 

definition is that an ellipsoid is a set described by (4.5) for some positive 

definite Q and some s. 

Geometrically, s is the center of the ellipsoid E. If Q is a diagonal matrix 

and s = 0, then we have an ellipsoid in axial position, of the form 

2 2 2 fyert: Hy Bye Beat, 
qu 22 qnn 

and in particular, we recover the usual equation of an ellipse mentioned 

above. The numbers ./qii, ./d22,---, ./Gnn are the lengths of the semiaxes 

of E. 

Proof of Lemma 4.8. First we consider a very special case of the lemma, 

where E = B" is the unit ball, s = 0, and H is the special half-space 

Ho = {x1 > O}. 
Since the set B"M Ho is rotationally symmetric around the x-axis, it is 

natural to obtain a suitable E’ by squeezing the ball B™ in the x;-direction, 

and expanding it appropriately in the other directions. 

€2 E     
We can thus write the affine map making B" into E’ in the form x H Mx+ 

te;, where t > 0 is a yet unknown parameter determining the translation
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and M is a diagonal matrix of the form 

a 

b 

b 

where a € (0,1) is the squeezing factor along the x;-axis and b > 1 is the 

expansion factor in the other directions. 

The volume of E’ is proportional to det M = ab" |, so we will want to 

minimize that expression. Intuitively, it should be sufficient to guarantee 

that E’ of the above form contains the points e; and e,, which leads to the 

inequalities 

vo 
a>1-—t and a + pe 

as the reader may want to check carefully. Assuming that both of these 

inequalities hold with equality, we express a and b in terms of t, obtaining 

a=1—t,b=(1—t)/v1 —2t, and 

<1, 

(1—t)" nT __ 

abr = Gaye 

We minimize the last expression as a function of t; this is a calculus problem 

which, fortunately, has a simple solution, namely, t = 1/(n +1). Then 

a =1— 4 and b can be simplified to ,/1+ =>. 

The calculation up until now can be regarded as heuristic; we should 

now verify carefully that not only the points e; and e2, but all of the half- 

ball are contained in E’. By rotational symmetry, it suffices to verify that 

every point (x1,x2,0,...,0) with x; > 0 and x? + x3 < 1 belongs to E’. We 
leave this calculation as an exercise. 

The ratio vol(E’)/ vol(B") equals ab"—'. Using the well-known inequal- 

ity 1+x < e%, we have a < exp=y and b < expyaymcy and so 

ab"! < exp(=5 + hy) = e71/?") this is the value p claimed in the 
lemma. 

It remains to deal with the general case, where E is an arbitrary ellipsoid 

with center s and H is an arbitrary half-space whose interior avoids s. First, 

by translation, we may assume s = O. Second, we may assume that the 

 



106 CHAPTER 4. LINEAR PROGRAMMING 

boundary hyperplane of H passes through the center of E (since translating 

H away from the origin makes HME smaller in inclusion). 

We want to find a linear map T: R™ — R™ such that T(B") = E and 

T(Ho) =H, where Hp is the half-space {x, > 0} considered in the first part 

of the proof. Indeed, if Ej is an ellipsoid enclosing B" Hp as in the lemma, 

then the ellipsoid E’ = T(E) encloses ENH and has volume at most p-vol E, 

since affine maps change all volumes in the same ratio. 

How can we compute the matrix of T? We may assume that E is rep- 

resented by a linear map M with E = M(B”) (there is no translation since 

here we assume E centered at 0). The only problem is that M, in general, 

is not going to map the normal vector e; of Hp to the normal vector, call 

it u, of H. To rectify this, let v be the preimage of u normalized so that 

l|v|| = 1; Le, v= M-'(u)/||M-"(u)||. According to the following exercise, 
we find a rotation R of R" with R(e;) = v, and we set T = MR (first we 

rotate, then we apply M). This concludes the proof. O 

Exercise 4.8. Let v € R" be a unit vector. Find a rotation R with R(e;) =v 

(write down the matrix of R w.r.t. the standard basis of R"). 

Implementing the iterations of the ellipsoid method. Now we consider issue 

(A) from the previous section, implementing the iterations. At first sight, 

it may seem that there is no problem and that we can just implement the 

method from the above proof. However, the formulas derived in that proof 

contain square roots, and so we cannot compute the matrices representing 

the ellipsoids Ey exactly in rational arithmetic. 

The usual solution is to compute only approximately, with a suitable 

accuracy (which will generally depend on the size of the input—note that 

we can afford to compute with b-bit numbers, where b is a polynomial 

function of the input size). 

In order to guarantee that the polyhedron P is still contained in E, even 

after the numbers representing E;, are rounded, we first expand E, slightly. 

Then one has to verify that rounding does not destroy the properties of 

the algorithm, and this is the somewhat lengthy and tedious part which we 

chose to omit in our treatment.
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4.6.3 Solving linear programs using the relaxed feasibility problem 

Here we explain how the algorithm for the relaxed feasibility problem 

(Problem 4.7) can be used to decide the feasibility of an arbitrary sys- 

tem Ax < b of linear inequalities, while preserving polynomial running 

time. This is issue (B) at the end of Section 4.6.1. For brevity, let us write 

p = (A) + (b) for the encoding size of the considered system. 
We will construct a new system Ax < b, whose encoding size is polyno- 

mialin @, and such that 

(i) P c B(O,R), where (R) is polynomial in @. 

(ii) If P 4 Q, then P contains an e-ball, with e > 0 and (e) polynomial in 

Q. 

(iii) If P = 0, then P = 0. 

As the reader has surely guessed, P and P denote the sets of all feasible 

solutions of Ax < b and of Ax < 6, respectively. 

Boundedness. Making the polyhedron bounded is easy using Theorem 4.2, 

which tells us that if P 4 0, then PO[—K, K]" 4 0 as well, where K := 29, 
with a suitable constant C;. So we simply add the inequalities 

K<x4<K, j=1,2,...,n 

to the system, obtaining a new system A’x < b’ with encoding size og’ = 

O(ng). 

Thickening the polyhedron. The next lemma takes care of “thickening” 

the polyhedron so that, if it was nonempty, it will contain an e-ball. The 

nontrivial part is to make sure that thickening an empty polyhedron cannot 

create a nonempty one. 

Lemma 4.9. Let Ax <b be a system of inequalities with rational coeffi- 

cients and encoding size ~, let P be its polyhedron of feasible solutions, 

and let P, be the polyhedron of the system Ax <b+nl1, where 1 ts the 

vector of all 1s. Forn =2-@°, with a sufficiently large constant C2, 

the following hold. 

(a) IF PAO, then P, contains an e-ball for e=n/2°. 

(b) If P=O, then P, =9.
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Proof. Part (a) is straightforward: we just observe that if a is one of the 

rows of A, we have |a"(x — x’)| < ||al| - |Jx —x’]] < 29||x—x’||, and it follows 

that if x € P and ||x’ —x|| < e, then x’ € P,. 

Part (b) is proved using the Farkas lemma. Namely, if Ax < b has no 

solution, then by Farkas lemma I (Lemma 4.4) there is y with A'y = 0 and 

b'y < 0; by rescaling we can assume b’y = —1. 

Then Theorem 4.2 tells us that there also exists such a y with (y) = 

O(@). We claim that this y also witnesses infeasibility of Ax < b+]. 

Indeed, it suffices to check that (b+11)'y < 0, or in other words, that 

—1'y <1/m. But |Tyl < 1, ly < 206) = 2°), where the constant in 
O(.) does not depend on C> in the definition of n, so a sufficiently large Cz 

will do. O 

Returning to the plan at the beginning of this section, given the original 

system Ax < b, the new system Ax < is 

Ax<b+nl, —K-n<x<K4+n, j=1,2,...,n 

(of course, adding the tiny number n to the gigantic number K is ridicu- 

lous and unnecessary, but logically appropriate, since first we produce a 

system whose feasible polyhedron is guaranteed to be bounded, and then 

we thicken that polyhedron). The above discussion implies that conditions 

(i)—(iii) are satisfied, with R = (K+n)/n and e = 1/2®'. The encoding 

size of the new system is at most O(n@) = O(@?) as needed. 

Actually finding a solution. We may seem to be done, but the algorithm 

we have so far only decides whether Ax < b has a solution, but it does 

not necessarily provide one—indeed, it returns a solution of the auxiliary 

system Ax < 6, and this need not solve the original system. 

This time we let the reader discover an algorithm in a guided exercise. 

Exercise 4.9. Suppose that we have an oracle that, given a system of 

linear inequalities, decides its feasibility (outputs YES or NO). Design 

an algorithm that computes a solution of a given system of linear equa- 

tions and inequalities, provided that one exists, 1n polynomial time and 

with polynomially many calls of the oracle. 

(a) How can we proceed if there are only equations in the system? 

(b) If there 1s at least one inequality, use the oracle to check if 

there 1s a solution satisfying that inequality with equality, and take 

appropriate actions depending on the outcome.
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We conclude our treatment of the ellipsoid method with two potentially 

useful remarks. 

Why ellipsoids? They are used in the ellipsoid method since they constitute 

probably the simplest class of n-dimensional convex sets that is closed 

under nonsingular affine maps. Popularly speaking, this class is rich enough 

to approximate all convex polyhedra including flat ones and needle-like 

ones. If desired, ellipsoids can be replaced by simplices, for example, but 

the formulas in the algorithm and its analysis become considerably more 

unpleasant than those for ellipsoids. 

The ellipsoid method need not know all of the linear program. The system of 

inequalities Ax < b can also be given by means of a separation oracle. This 

is an algorithm (black box) that accepts a point s € R" as input, and ifs 

is a solution of the system, it returns the answer YES, while if s is not a 

solution, it returns one (arbitrary) inequality of the system that is violated 

by s. (Such an inequality separates s from the solution set, and hence 

the name separation oracle.) The ellipsoid method calls the separation 

oracle with the centers 5, of the generated ellipsoids, and it always uses 

the violated inequality returned by the oracle for determining the next 

ellipsoid. 

We talk about this since a separation oracle can be implemented ef- 

ficiently for some interesting optimization problems even when the full 

system has exponentially many inequalities or even infinitely many. 

Probably the most important example of a situation in which an infi- 

nite system of linear inequalities can be solved by the ellipsoid method is 

semidefinite programming. This is one of the most significant directions in 

optimization in the 1990s, similar to linear programming dominating the 

1970s. But this is another story belonging to another course.
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Addendum by E. Welzl> 

4.7 Traveling Salesman 

Given a graph G = (V,E) with costs c, CR, eC E, a tour tis a spanning 

cycle (also called Hamiltonian cycle), formally a subset E, of E such that 

(i) the graph (V, E,) is connected and (ii) every vertex is incident to exactly 

two edges in E,. The cost of tour 1 is defined as ) o-¢ Ce. An optimal 

tour in G is a tour of minimal cost. The task of computing an optimal 

tour for a given graph G is often called the traveling salesman problem,° 

a classical NP-complete problem. 

For S C V, let 5(S) := {fe € E : |e S| = 1}, sometimes called the 

boundary of S or the edge set of the cut (S,V\S). For v € V, we write 

&(v) short for 8({v}), the set of edges incident to v. With this we can specify 

the characteristic vectors of edge sets of tours by the following constraints. 

x € {0,1}§ 

>» xX. = 2, forallve V, and 

ecd(v) 

> x > 1, forallSCVwithOAS AV. (4.6) 
ecd(S) 

Condition (4.6) says that every nontrivial cut must contain at least one 

edge, a characterization of connectivity (see exercise below). Note, however, 

that for the edge set of a tour, every such cut must indeed have at least 

two edges (follows from the fact that every cut must have even size). That 

is, we can substitute (4.6) by 

> x > 2, forallSCVwithOAS AV. (4.7) 
ecé(S) 

While these constraints are equivalent in the integer program, the resulting 

LP relaxation of the traveling salesman problem is more constrained and 
  

5One source and inspiration for the text below is Jens Vygen, New approximation algo- 

rithms for the TSP, http: //www.or.uni-bonn.de/~vygen/files/optima.pdf. Thanks 

also to Thomas Holenstein for discussions on the topic and to Manuel Wettstein for com- 

ments after reading a draft version. 
SMore recently, in the spirit of political correctness, renamed to traveling salesperson 

problem.
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therefore its optimal solution is hopefully closer to the integer solution. 

Subtour LP for graph G = (V,E),c € R® 

min c'x 

subject to) acsyyXe = 2, forallveV, 

Decas)Xe = 2, forallSCVwithO#¢S+V, and 

1>x,. > 0, forallecE. 

This LP is called Subtour LP or Held-Karp relazation, although it was 

first considered by Dantzig, Fulkerson and Johnson in 1954. Recall that 

an optimal solution % to this LP is a lower bound for an optimal solution 

x* € {0, 1}§ to the underlying integer program, i.e. 

clk <clx* = OPTiour « 

with OPTtour the cost of the optimal tour in G with costs c. (Caveat: Is 

the LP and IP always feasible? See exercise below.) 

A graph G = (V,E) with costs c satisfies the triangle inequality if 

E= (3) and 

Chuw} < Ciuy} + Cow} for distinct u,v, w € V. 

(For |V| > 3 it follows that c, > 0 for alle € E.) Provided the triangle 

inequality is satisfied, it can be shown that 

3 
eX < c!x* = OPTiour < 50% . 

The 3/2 ratio reminds us of the Christofides approximation for the traveling 

salesman problem with triangle inequality. We willreturn to this point later 

and we will see that there is indeed a connection. 

There is a worry looming: The Subtour LP has an exponential number 

of constraints (n + (2" — 2) + 2m, for n := [V| and m := |E|). So can we 

solve the LP efficiently? The dimension is m and given a vector x, we can 

find a violated cut constraint (4.7), if it exists, via a min-cut algorithm in 

polynomial time. This provides exactly the type of polynomial separation 

oracle we need for an efficient employment of the ellipsoid method. 

Exercise 4.10. Show that a graph G =(V,E) ts connected iff 6(S) #0 for 

allS CV,@A#AS#V. Recall here the definition of “connected:” A 

graph G ts connected tf there 1s a path between any two vertices in G.
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Exercise 4.11. (2) Give a graph G = (V,E) for which the subtour LP is 

infeasible. (it) Give a graph G = (V,E) where the subtour LP is feasible 

but there is no feasible integer solution. 

Exercise 4.12. Show that the constraints “1 > x,” are redundant in the 

Subtour LP, 1.e. every point x € R® that is feasible w.r.t. all other 

constraints does satisfy 1> x, for alle cE. 

Exercise 4.13. Show that all characteristic vectors x of tours of a graph 

G = (ME) are vertices of the feasible region of the Subtour LP. (You 

can use the following characterizations: (1) A point p € R™ is a vertex 

of a convex polyhedron P C R™ 2f there exists a hyperplane h with 

POh={p}. (2) A point p € R™ ts a vertex of a conver polyhedron 

P C R™ ¢f there exists a vector c € R™ such that p is the unique point 

in P that maximizes c'p.) 

Exercise 4.14. Investigate the Subtour LP versus the Loose Subtour LP, 

where the cut constraint is written with “> 1” rather than “> 2”. 

One concrete question to consider is the following: If X 1s an optimal 

solution to the Subtour LP and X' is an optimal solution to the Loose 

Subtour LP, how small can c'X' be compared to c'X? 

4.8 Minimum Spanning Tree 

Given a graph G = (V,E) a subgraph T = (V,E’), E’ C E, is called a 

spanning tree of G if (i) it is connected and (ii) it has no cycle. Given costs 

ce € R for e € E, a minimum spanning tree is a spanning tree T = (V,E’) 

with minimal cost ) acer Ce- 

It is well-known that there are several equivalent characterizations, e.g. 

T is a tree uff (1) it has exactly n—1 edges and (11) it is connected. 

This suggests to express the characteristic vectors of spanning trees by the 

following constraints. 

x € {0,1}* 

> xe = n-—l1, and 

ecE 

> xe > 1, forallS CV with O4S AV. 
ec6(S)
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{) 

Figure 4.1: Graphs G34 and Gy , “fractional trees” according to the Loose 

Spanning Tree LP: With weight x, := 1 for fat edges e and weight 5 for 

thin edges, the overall weight is the number of vertices minus 1 and all cuts 

have weight at least 1. 

We consider the LP relaxation. 

Loose Spanning Tree LP for graph G = (V,E),c € R® 

min c'x 

subject to Yecr% = n-—1 

d-ecé(s) Xe > 1, forallS CV,OASFV, and 

1>x. > 0, forallecE. 

Let us investigate the behavior of the Loose Spanning Tree LP on the 

graph 

uYU oe ) U {{vo, v1}; {vy ’ v2}; oe {Ve_1 ’ va Gye = (u U {Vo, V1, oe Ve}; ( 

with |U| = k—2. That is, this graph has k + £—1 vertices; it consists of 

a k-clique with a path of length @ attached to two vertices of the clique. 

Now define c, := 0 for all edges of the k-clique and, for some positive real 

number y, c, :=y for all edges of the f-path. 

Lemma 4.10. (7) For the graph Gy». with costs as described above a min- 

wmum spanning tree has cost (€—1)y. (i) The corresponding Loose 

Spanning Tree LP has a value of at most SY of €=k(k—3)4+4. 

Proof. Every spanning tree of G;,~¢ must contain at least €—1 of the edges 

of the &path, otherwise it cannot be connected. Hence, (i) holds. 
For a proof of (ii) let x. := 1/2 for the edges of the &path and x, := 1 

for the edges in the k-clique. This gives } -¢ Xe = €/2+ (5) = (k+£-—1)-1
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for £=k(k—3)+4. Therefore the equality of the LP is satisfied, and it is 

easily seen that the cut constraints are met as well (follows from the fact 

that there is a spanning cycle where all edges have weight x, at least 3): 

The value of c'x equals fy. 

We have seen that the Loose Spanning Tree LP allows a fractional solu- 

tion that is roughly a factor 5 smaller than the cost of a minimum spanning 

tree. A better LP is possible. For that we now switch to the alternative 

characterization 

T is a tree iff (i) it has n—1 edges and (ti) it contains no cycle. 

A graph has no cycle iff no set of k vertices induces a graph with k 

or more edges. This leads to the following new set of constraints for the 

spanning tree problem. 

Tight Spanning Tree LP for graph G = (V,E),c € R® 

min c'x 
subject to decrXe = n—-I 

dectn($) Xe < |S|—1, forallS CV, OASFV, and 

1>x. > 0, foralleceE. 

Here comes a surprise, although we have to leave it without a proof here 

and refer to the literature for that. 

Theorem 4.11 (Edmonds, 1970). Every basic feasible solution of the Tight 

Spanning Tree LP 1s integral. Therefore, the value of the Tight Span- 

ning Tree LP equals the cost of the minimum spanning tree for every 

cost vector c. 

The Geometric View and the Spanning Tree Polytope. We are interested in a 

certain family of subsets of a ground set, here the family 7 of (edge sets 

of) spanning trees of a graph G = (V,E). Let $7 C {0,1}® be the set of 

characteristic vectors of the sets in 7. For c € R§, we are interested in 

mines, c'x (and in an x* € S; with c'x* = minxes, c’x). 

We now design a linear program Ax < b such that the polyhedron 

P := {x € RE : Ax < b} specifies our problem in the sense that $; = 
PZ. A solution min,-pc'x to the linear program (with cost vector 

c) may obviously deviate from our desired minxcs,c!'x. The better the 

polyhedron P “embraces” $7, the better the LP solution will be.
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There is a “perfect” polyhedron, namely P* = P7 := conv(S7). We 

have P* C [0, 1]*, therefore P* is a polytope’; it is called the spanning tree 

polytope of the underlying graph G. 

It is not hard to show that 

mipclx = minc'x 
A fundamental theorem in discrete geometry says that every polytope is 

the intersection of a finite number of halfspaces, that is, there is a linear 

program A‘x < b* such that P* equals {x € R& : A‘x < b*}. Edmonds’ 

Theorem tell us that the Tight Spanning Tree LP has exactly this property: 

The set of feasible solutions is P*. 

But we just learned that such an LP always exists, so what’s the big 

deal. The problem is that for our algorithmic intentions (ie. solving a 

optimization problem efficiently), the existence of the perfect LP is not 

enough, we need to get a hand on it, find some concrete description. This 

description needs not to be small, we do not even need it in some explicit 

form, but we need some form of separation oracle as we have discussed it 

for the ellipsoid method. 

Exercise 4.15. Show that the value of the Loose Spanning Tree LP for 

Gye with the weights described above and with = k(k—3)+4 is exactly 

aY- 

Exercise 4.16. Show that every feasible point of the Tight Spanning Tree 

LP 1s feasible in the Loose Spanning Tree LP -— without using Theo- 

rem 4.11. 

Exercise 4.17. m GN. Let S C R™ be finite and P :=conv(S). Show that 

for every c € R™ we have 

minc'x = minc'x . 
xeP xcS 

(You may use the Separation Lemma: For p € R™ and C C R™ a conver 

set, we have p € C iff there exists a closed halfspace H with pC H and 

HnC=9.) 
  

’Follows also from the fact that Sy is finite.
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Exercise 4.18. Consider the following linear program, almost the Tight 

Spanning Tree LP, it seems: 

Some LP for graph G = (V,E),c € R® 

min c'x 
subject to deceXe = 1 

Decen(s) %e < |S|-1, for allSCV,OASFV, and 

1>x, > 0, foralleceE. 

What are the edge sets corresponding to vectors x € {0,1}® feasible in 

Some LP? 

49 Back to the Subtour LP 

With the euphoria after having seen a “perfect” LP relaxation for the min- 

imum spanning tree problem, we would of course like to know what the 

situation with the Subtour LP is. More concretely, for X an optimal solu- 

tion to the Subtour LP and for x* the integral counterpart, do we always 

have equality c'X = c'x*. We suspect this not to be true since otherwise 

we have a polynomial time algorithm for the traveling salesman problem, 

an NP-complete problem—but why not?. 

If this equality does not always hold, we are still interested in how big 

the ratio “= can get. This ratio is called the integrality ratio® (Edmonds’ 
Theorem 4.11 implies that the integrality ratio is always 1 for the Tight 

Spanning Tree LP). 

  

Graphic Metrics. In order to get a hand on interesting cost functions, we 

make the following definitions. Let G = (V,E) be a connected graph and let 

d(u,v) be the length of the shortest path between u and v. This induces 

costs Civ} = d(u,v) € N on the edges of the complete graph (V, (3) 

These costs always satisfy the triangle inequality. A cost function on the 

complete graph obtained in this way is called a graphic metric.° 

Lemma 4.12. Let the graphic metric c on () be induced by the connected 

graph G =(V,E). Then the optimal tour of G' = (V, ()) with costs c 
  

8Sometimes also called integrality gap. 

°The traveling salesman problem for a graphic metric is often called graphic TSP or 

graph TSP.
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Figure 4.2: Graph Gg, a “fractional” cycle according to the Subtour LP: If 

fat edges e get weight x, := 1 and thin edges get weight x, := nn then every 

vertex is incident to edges of overall weight 2, and every cut has weight at 

least 2. 

equals the length of the shortest closed walk’ in G visiting all vertices 

at least once. 

Proof. Let (vo, v1,..-,Ve_1, Ve = Vo) be a closed walk of length @ in G 

visiting all vertices, i.e. there are indices 0= i, <i2 <...i, < 2 such that 

V = {iy Vigy++ +) Vin} Note that for 1<j<k < ¢, we have d(w,vi,) < 

i; —i, and, therefore, the tour vi,,Vi,,..-, Vi, and back to v4, is a tour in 

G’ of cost at most £. In a similar fashion every tour of cost 2 in G’ can be 

turned into a closed walk of length ¢ visting all vertices of G. 

Now we consider a specific graph G;, with n := 3k vertices. It consists of 

three disjoint paths of length k—1 (i.e. k vertices each), plus pairwise edges 

between the three starting points and also between the three end points of 

these paths. Let Gj be the graph with the graphic metric induced by Gy. 

Lemma 4.13. Let k © N and let n := 3k (the number of vertices of Gy 

and G;). (4) The Subtour LP on G;, has a feasible solution with value 

n. (it) Every closed walk in G, visiting all vertices has length at least 

gn —O(1) and therefore every tour in G, has cost at least $n — O(1). 

Proof. Note first that for every edge e of G, we have ce = 1 in Gj. Now 

set x. = 5 for the six edges in the two 3-cliques of Gx, let x, := 1 for the 

remaining n —3 “path”-edges in G,, and let x, := 0 for all other edges in 

G;; hence, ) xe =n. The resulting vector x is feasible in the Subtour LP 

(not too difficult to check, argument omitted here) and cx = ) ,x- =n, 

since all edges with x, > 0 have c, = 1. Thus, (i) is shown. 

For (ii) observe that every closed walk visiting all vertices in G, has 

to use all or all but one edge on each of the three building paths of Gy: 
  

104 walk in a graph G = (V,E) is a sequence of (not necessarily distinct) vertices 

(vo, V1,---,Ve) with consecutive vertices adjacent in G. The walk is closed if ve =vo. The 

length of the walk is £, and, for edge costs c € RF, the cost of the walk is yi, Clyi_1,vil-
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Skipping two edges disconnects some vertex from the rest and thus the 

walk cannot visit all vertices. Next consider a set of three edges {e1, e2, e3}, 

with e; from the first path, e2 from the second and e3 from the third path. 

Removal of these three edges splits the graph into two parts. It follows 

that every closed walk has to use the edges in {e1, e2, e3} an even number 

of times; that is, if all three edges are indeed used at least once, then we 

have to use them at least 4 times altogether. 

Now partition the edges of the three paths in triples, each triple contain- 

ing one edge from each path. This gives k —1 such triples, where at least 

(k—1)—3 triples have to be used at least 4 times in a closed walk visiting all 

vertices. Therefore, the walk must have length at least 4(k—4) = in — 16. 

We can conclude that the Subtour LP is not perfect and that we have 

a family of graphs G; with costs c which exhibit an integrality ratio of 

roughly $: 

ctxt > 4 as the size n = 3k of the graphs grows 
ctx 3 ~ Brapas grows. 

  Now, clearly, we wish to know whether the integrality ratio oe has 

an upper bound. For that we will have to combine the insights we have 

collected about the Subtour LP, about the Tight Spanning Tree LP, and 

about the Christofides approximation algorithm for TSP. 

Exercise 4.19. Show that a shortest closed walk viszting all vertices in G, 

has length 4k —2 = $n —2. 

Exercise 4.20. Let T = (V,E) be a tree and let G’ be the complete graph 

on V with the graphic metric induced by T. (1) What is the cost of 

an optimal tour in G'? (11) What can you say about the value of the 

Subtour LP value for G'? (This is a very unspecified question, so you 

will have to decide for yourself in which direction to go.) 

4.10 Subtour LP versus Tight Spanning Tree LP 

We now relate the Subtour LP to the Tight Spanning Tree LP with the 

goal of deriving an upper bound on the integrality ratio of the Subtour LP.
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Lemma 4.14. For a given graph G = (V,E), if x € R* is a feasible solu- 

tion of the Subtour LP, then nly is a feasible solution of the Tight 

Spanning Tree LP. 

Proof. For x a feasible solution of the Subtour LP we have 

yx=5 ae =2n=n 

ecE 2° ecd(v 

and therefore ) ,-; "x. = n—1 and the first constraint of the Tight 

Spanning Tree LP is satisfied for nly, 

Next, forS CV, 04S V, we have 

>2 

<7 | 
y =35/>) Ee Xe— J xe] < (28|—2) =|s\-1. 

ecEn($) VES ecd{v e€d(S) 

We have shown that also the inequalities of the Tight Spanning Tree LP 

are satisfied. (Even 1 > % nth, > 0 follows from 1 > x_ > 0.) 

Corollary 4.15. Gzven a graph G, if X 1s an optimal solution of the Subtour 

LP and OPT zs 18 the cost of the minimum spanning tree, then c'% > 

= OPT mst- 

Proof. We know that nlx is a feasible solution of the Tight Spanning 

Tree LP, and therefore nt c'X is at least the value of the Tight Spanning 

Tree LP, which is attained by a basic feasible solution, which is known to 

be integral (by Theorem 4.11) and therefore the value equals OPT ns. 

Recall that, under the assumption of the triangle inequality, we have 

OPTtour < 2- OPT mst (4.8) 

(We can turn the closed walk that uses every edge of a minimum spanning 

tree twice into a tour by skipping vertices already visited; the triangle 

inequality ensures that the resulting tour has cost at most the cost of the 

initial closed walk, which is twice the cost of the minimum spanning tree.) 

Corollary 4.16. For a graph G whose costs c satisfy the triangle inequality 

the integraltty ratio of the Subtour LP is at most 2.
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Proof. For % an optimal solution to the Subtour LP and x* an optimal 

integral solution, we have 

Tex mT ] 1 To 
cx 2 TOP dinst 2 OPT mst 2 7OP Trout = 7° xy 

the first inequality is from Corollary 4.15, the second inequality uses that 

OPTinst is non-negative (because of the triangle inequality), the third in- 

equality is from (4.8) above, and the last equality is the basic property of 

the Subtour LP. Hence, “2 < 2. 
» cl 
  

This bound of 2 allows improvement along the familiar Christofides 

approximation, which generates a tour at most 3/2 times the cost of the 

optimal tour as follows: (1) Choose a minimum spanning tree (of cost 

OPTinst)- (2) For U the set of vertices of odd degree in this tree, compute 

the minimum weight matching (of cost OPT ynatcnru)) covering all vertices 

in U (this set is conveniently of even size). (3) The union of the minimum 

spanning tree and the matching is Bulerian (i.e. is connected and all vertices 

have even degree, if edges both in tree and matching are counted twice), 

thus a closed walk of cost OPTinst + OPT match(u) Visiting all vertices exists. 

(4) Such a walk can be turned into a tour of at most this cost (exploiting 

the triangle inequality). 

We can can conclude that 

OP Tour < OPT mst + OPT match(U) 

Besides OPT asp < c'X one can also show OPT ynatcncu) < 5clX (proof omit- 

ted here). With these facts in our hands, we can conclude: 

Theorem 4.17. If G 1s a complete graph with costs satisfying the triangle 

inequality and if X 1s an optimal solution to the Subtour LP for G, 

then 
3 

clk < OPT tour < 50% ’ 

(for OPTiour the cost of an optimal tour in G). 

For all e > 0 there exists a graph with costs satisfying the triangle 

inequality such that OPTour > (§ — e)e™. 

The situation between $ and 3 has been open for a long time — and 
still is, to the best of my knowledge. Also, Christofides’ polynomial 3/2- 

approximation is still the best known for triangle inequality TSP. However,
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there was some progress on graphic TSP (with a graphic metric), where 

Momke and Svensson, 2011, showed a 1.461-approximation, and later a 

1.4-approximation by Sebé and Vygen, 2012. 

For open problems in this context see Vygen’s survey http://www. or. 

uni-bonn.de/~vygen/files/optima.pdf, Section 8 (page 22).
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