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General rules for solving exercises
e When handing in your solutions, please write your exercise group on the front
sheet:
Group A: Wed 14-16 CAB G 56
Group B: Wed 14-16 CAB G 57
Group C: Wed 16-18 CAB G 56
Group D: Wed 16-18 CAB G 57

e This is a theory course, which means: if an exercise does not explicitly say “you
do not need to prove your answer”, then a formal proof is always required.

The following exercises will be discussed in the exercise class on October 23, 2024. These
are “in-class” exercises, which means that we do not expect you to solve them before the
exercise session. Instead, your teaching assistant will solve them with you in class.

Exercise 1
We are given a set P of n points in R? and a point q which has distinct distances to
all points in P. We add the points of P in random order (starting with the empty set),

and observe the nearest neighbor of q in the set of points inserted so far. What is the
expected number of distinct nearest neighbors that appear during the process?

Exercise 2

Show that every linear program can also be converted into the following equational
form:

maximize c'x subject to Ax =b, x > 0.

What is the maximum increase in the number of variables and in the number of con-
straints in such a transformation?



Exercise 3

Suppose we are given a set S of n closed halfspaces in the plane. For each H € S, let
¢y C H denote its boundary line. We assume that the halfspaces are in general position
such that no two boundary lines are parallel and no three boundary lines meet in a single
point. Consider the input to be given in the form of linear inequalities, say.

In this task we are interested in a randomized algorithm to decide whether the intersec-
tion of the given halfspaces is non-empty, that is whether R(S) = 0 for R(S) := Nyes H,
or not. If S has a non-empty intersection, we would also be interested in a certificate
point, that is in a point x € Ncs H to demonstrate non-emptiness. To make your cal-
culations simpler, we want to make certificate points unique. To this end, we assume
|S| > 2 and fix, arbitrarily, two halfspaces H;,H;,€ S. The region R(S) is obviously
contained in a wedge formed by the lines {;, and ¢y, (see figure). Before starting any
algorithm, you may assume that the input is rotated”| first in such a way that this wedge
opens to the right and the intersection point g € £y, N ¢y, acts as a guard that no point
in R(S) can have a smaller x-coordinate than g (see figure). We then define for any
S’ C § with Hy, H, € S’ the unique certificate point ¢(S’) as the point in R(S’) that has
the smallest x-coordinate. You may assume that H; and H, are fixed before and known
to all your algorithms below.

Following are your tasks:

(a) Let |S| > 3 (with H; and H, as described above) and let H € S\ {H;, H,} be an
arbitrary one of the halfspaces. Prove: if R(S) # 0, then either ¢(S) = ¢(S \ {H})
or c(S) € ty.

(b) Let [S| > 3 (with H; and H, as described above) and let H € S\ {H;,H,} be
an arbitrary one of the halfspaces. Assume that R(S \ {H}) # 0. Write down
a deterministic algorithm that runs in time linear in n = |S| and that on input
(S,H, c(S \ {H})) determines whether R(S) # @ and if so outputs c(S).

(c) Let again [S| > 3 (with H; and H, as described above). Using (b), write down
a randomized algorithm which, given S, determines whether R(S) # 0 and if so
outputs ¢(S). Your algorithm should run in expected time linear in n = |S|.

1this rotation can always be done such that we also do not have vertical or horizontal lines, which you
may assume



