
Institute of Theoretical Computer Science

Bernd Gärtner, Rasmus Kyng, Angelika Steger, David Steurer

Algorithms, Probability, and Computing Exercises KW50 HS24

General rules for solving exercises

� When handing in your solutions, please write your exercise group on the front
sheet:

Group A: Wed 14{16 CAB G 56

Group B: Wed 14{16 CAB G 57

Group C: Wed 16{18 CAB G 56

Group D: Wed 16{18 CAB G 57

� This is a theory course, which means: if an exercise does not explicitly say \you
do not need to prove your answer", then a formal proof is always required.

The following exercises will be discussed in the exercise classes on December 11, 2024.
You can hand in your solutions via Moodle, no later than 2 pm at December 10.

Exercise 1

You throw a fair coin n times in a row, all throws being independent. Let's say you
win if the coin comes up heads and you lose if the coin comes up tails. Show that the
expected length of the longest winning streak is Θ(logn).

Exercise 2

(Exercise 6.1 from the lecture notes)

Show that the maximum of n entries can be computed in O(log logn) time-steps, using
the CRCW version of PRAM with n processors.

1



Exercise 3

(Exercise 6.2 from the lecture notes)

Use Brent's principle to determine the smallest number of processors that would allow
us to run the Parallel Pre�x algorithm which we saw above in O(logn) time. Recall that
algorithm had O(logn) depth and O(n) total computation. Explain how the algorithm
with this small number of processors works, that is, what each processor needs to do in
each time step.

Exercise 4

(Exercise 6.3 from the lecture notes)

Suppose that instead of adjacency lists, the graph is input as an n�n binary adjacency
matrix where the entry at location (i, j) is 1 if the ith and the jth nodes are adjacent, and
0 otherwise. Devise an algorithm with O(logn) depth and O(n2) work that transforms
this adjacency matrix to adjacency linked lists, one for each vertex.

Exercise 5

(Exercise 6.5 from the lecture notes)

Modify the approach for computing a pre-order of nodes of a given tree T = (V, E) from
the lecture notes so that it provides a post-order numbering post : V → {0, . . . , n− 1} of
the nodes. That is, for each node v, we have a post-order numbering of the subtree rooted
in the �rst child of v, then a post-order numbering of the subtree rooted in the second
child of v, etc, followed by node v itself. In particular, you should have post(r) = n− 1.
Argue that the algorithm provides the correct ordering, and explain why it has O(logn)
depth and O(n) computation.

Exercise 6

(Exercise 6.6 from the lecture notes)

Devise a parallel algorithm with O(logn) depth and O(n) total computation that com-
putes for each node v in a tree T = (V, E) with root r 2 V, the number of its descendants,
i.e., the total number of nodes in the subtree rooted at node v.

2


