
Institute of Theoretical Computer Science

Bernd Gärtner, Rasmus Kyng, Angelika Steger, David Steurer

Algorithms, Probability, and Computing Solutions KW39 HS24

Solution 1

Assume for a contradiction that the graph has two distinct minimum spanning trees T
and T 0. Let e = {u, v} be an edge in T which is not in T 0. Removing edge e cuts the
tree T into two components (trees). Let Tu and Tv be the vertices in the component
containing u and v, respectively. Consider the edge boundary ∂(Tv) and let e 0 be the
unique light edge in ∂(Tv). If e 6= e 0 then w(e 0) < w(e) and the spanning tree obtained
by removing e and adding e 0 has a smaller weight.

Hence, assume that e 0 = e, i.e., the unique light edge e in ∂(Tv) does not belong to T 0.
Consider the path p from u to v in T 0. Path starts in Tu and ends in Tv, hence there
must be an edge e00 on it which is in ∂(Tv) (there might be several of them, but take
one). As e is the unique light edge in ∂(Tv), w(e) < w(e00). If we add e to T 0, we get
a cycle composed of e and path p. By removing any edge from the cycle we get again
a spanning tree. Hence, removing e00 from T 0 and adding e into it, gives us a lighter
spanning tree, which is a contradiction.

If no two edges have the same weight, then for every non-empty vertex set S � V , the
edge with the minimum weight in ∂(S) is unique. This implies that the graph has exactly
one MST.

Solution 2

We assume in both subtasks that c0 > 0 is a constant such that the running time of our
algorithm (without counting the contributions of the two recursive calls) on any input
graph G = (V, E) is bounded from above by the function D(n,m) := c0(n +m), where
n = |V | and m = |E|.

(i) Let T(n,m) denote the worst-case possible running time of the algorithm when given
a graph on n vertices and m edges as input. The key observation that we will use for
the analysis is the following inequality.

T(n,m) � max
k1,k2�0

k1+k2�m+n/8

T

�
n

8
, k1

�
+ T

�
n

8
, k2

�
+D(n,m)

!
(1)

Naturally, the above formula reects the fact that the running time consists of two
recursive calls and the additional non-recursive work, which is assumed to be no more
than D(n,m). Given that the algorithm uses Boruvka three times, it is also clear that

1

the number of vertices drops from n to at most n/8 in both recursive subproblems. As
for the numbers k1 and k2 of edges, we do not have any speci�c information about either
subproblem; each one of them could have close to m edges. Nevertheless, we do know
that only a small number of edges can �nd their way into both subproblems at the same
time, namely those edges that are contained in the spanning tree (or forest) returned by
the �rst recursive call. Since that spanning tree contains at most n/8− 1 edges, we can
conclude that k1 + k2 � m + n/8 holds in any case, and we simply maximize over all
such possibilities.

We deal with the remaining parts of this subtask in the following two claims. Simply
observe that in order to prove f = O(min{g, h}) for functions f, g and h, it su�ces
to prove both f = O(g) and f = O(h). Also note that the bound proved in Claim 2
immediately yields the stronger bound of O(m logn) if we assume that the input graph
is connected and that, hence, m � n− 1.

Claim 1. There exists a constant c1 > 0 such that T(n,m) � c1 � n
2.

Proof. The proof is by induction on n. In the following derivation, let k1 and k2 be the
numbers that maximize the formula in equation (1).

T(n,m) � T

�
n

8
, k1

�
+ T

�
n

8
, k2

�
+D(n,m)

� c1 �

�
n

8

�2

+ c1 �

�
n

8

�2

+ c0 � (n︸︷︷︸
�n2

+ m︸︷︷︸
�n2

)

�
1

32
c1 � n

2 + 2c0 � n
2 � c1 � n

2

The last inequality goes through if we choose the constant c1 := 3c0, for example.

Claim 2. There exists a constant c2 > 0 such that T(n,m) � c2 � (n+m) logn.

Proof. The proof is again by induction on n. Let k1 and k2 be as before.

T(n,m) � T

�
n

8
, k1

�
+ T

�
n

8
, k2

�
+D(n,m)

� c2 �

�
n

8
+ k1

�
log

�
n

8

�
+ c2 �

�
n

8
+ k2

�
log

�
n

8

�
+ c0 � (n+m)

= c2 � (k1 + k2︸ ︷︷ ︸
�m+n

8

+
n

4
) log

�
n

8

�
+ c0 � (n+m)

� c2 � (n+m) log
�
n

8

�
+ c0 � (n+m)

= c2 � (n+m) logn− 3c2 � (n+m) + c0 � (n+m) = c2 � (n+m) logn

The last equality holds if we choose the constant c2 := c0/3.

2

D(n,m)

D(1
8
n, 3

4
m)

D(1
82
n, 3

4
(3
4
m))

...

T(n2/5,∞)

...

T(n2/5,∞)

D(1
82
n, 3

82
n)

...

T(n2/5,∞)

...

T(n2/5,∞)

D(1
8
n, 3

8
n)

D(1
82
n, 3

4
(3
8
n))

...

T(n2/5,∞)

...

T(n2/5,∞)

D(1
82
n, 3

82
n)

...

T(n2/5,∞)

...

T(n2/5,∞)

Figure 1: A binary tree of very speci�c running times that we use in order to prove an
upper bound on the actually observed running time of the algorithm.

(ii)

(a). Let us start by imagining what could happen when the algorithm is invoked with
some input graph G. Clearly, we spend at most D(n,m) time if we neglect the two
recursive calls. As for the �rst recursive call, it might happen that we construct a new
graph G1 with exaclty n

8
vertices and a randomly selected set of 3m

4
edges. Thus, in that

�rst recursive call we would spend at most D(n
8
, 3m

4
) time plus however much time is

needed for the ensuing two recursive calls. As for the second recursive call, we might
construct a graph G2 with n

8
vertices again, but only a set of 3n

8
edges composed of a

spanning tree of size n
8
and another n

4
edges that turned out to be non-heavy. Thus,

in this second recursive call we would spend at most D(n
8
, 3n

8
) time plus however much

time is needed for the ensuing two recursive calls.

The imagined situation is depicted in Figure 1 as a binary tree of running times. In
the depicted tree it is assumed that the number of vertices of G is divided by exactly
8 at every level of the recursion. Furthermore, the number of edges in each �rst (i.e.,
left) subproblem is assumed to shrink exactly by a factor of 3

4
; and the number of edges

in each second (i.e., right) subproblem is assumed to be exactly 3 times the number of
vertices in that subproblem. As soon as the number of vertices of G has shrunk down
to n2/5 we make an arbitrary cut-o� and use the worst-case function T(n2/5,∞) from
subtask (i) to express the remaining running times.

Of course, it is highly unlikely that this special tree of running times will be observed in
an actual run of the algorithm. Nevertheless, we can prove that this model tree is not
too bad and that with high probability it dominates the actually observed tree.

Claim 3. There exists a constant c3 > 0 such that the sum of all running times in
the nodes of the tree depicted in Figure 1 is bounded from above by c3 � (n+m).

3

Proof. Let us �rst deal with the nodes at the bottom level of the tree. Observe that
these nodes must be at depth 3/5 � log8 n, and also recall Claim 1. Then, we get that
the sum over all such nodes is at most∑

T(n2/5,∞) � 23/5�log8 n � c2
�
n2/5

�2
= c2 � n. (2)

As for all remaining nodes that are not at the bottom level, we will again have to solve a
recursion similar to what we did in subtask (i). Let thus W(n,m) denote the sum of all
nodes contained in the subtree rooted at a node D(n,m), which hence has the following
recursive de�nition.

W(n,m) = W(
n

8
,
3m

4
) +W(

n

8
,
3n

8
) +D(n,m) (3)

Starting from equation (3), it can be shown by induction on n again that we have in
fact W(n,m) � 4c0 � (n+m). Combining this with equation (2) yields the desired claim
if we choose the constant c3 := 4c0 + c2, for example.

(b). Observe, again, that the bound obtained from Claim 3 is in fact O(m) for all
connected graphs G. The exercise is hence concluded by proving the following �nal
claim.

Claim 4. For any connected input graph G, the running time of the algorithm is
dominated by the sum over all nodes in the tree depicted in Figure 1 with probability
1− o(1) (i.e., a number that tends to 1 as n → ∞).

Proof. For every inner node D(n 0,m 0) of the tree in Figure 1 we simulate the following
random experiment. We let G be any graph on n 0 vertices and m 0 edges and then run
the algorithm on G, but without actually executing the recursive calls. Instead, we only
observe the sizes of the produced graphs G1 and G2 that would have been used as the
inputs for the two respective subproblems. We say that G1 is bad if it has more than
n 0

8
vertices or more than 3m 0

4
edges, and we say that G2 is bad if it has more than n 0

8

vertices or more than 3n 0

8
edges. From the de�nition of the algorithm it is clear that

neither graph can ever be bad because it has too many vertices.

For G1 to be bad we would therefore need at least 3m 0

4
heads out of m 0 coin ips. This

probability is upper bounded by Cherno� as follows, where X1, X2, . . . is a sequence of
indicator random variables that are 1 i� the corresponding coin ip is heads.

Pr [G1 is bad] = Pr

2
64

m 0∑
i=1

Xi �
3m 0

4

3
75 � exp

0
@−(1

2
)2 � m 0

2

2

1
A = e−

m 0

16

For G2 to be bad we would need, in addition to the n 0

8
edges coming from the spanning

tree, at least n 0

4
non-heavy edges. In other words, we would need at least n 0

4
tails before

getting n 0

8
heads, which is upper bounded by the probability of getting at least n 0

4
tails

out of 3n 0

8
coin ips. This probability is bounded again by Cherno� as follows, where

4

Y1, Y2, . . . is a sequence of indicator random variables that are 1 i� the corresponding
coin ip is tails.

Pr [G2 is bad] = Pr

2
64
3n 0/8∑
i=1

Yi �
n 0

4

3
75 � exp

0
@−(1

3
)2 � 3n 0/8

2

2

1
A = e−

n 0

96

By using the union bound and the fact that m 0 � n 0 � n2/5 in all nodes1 we then get

Pr [G1 or G2 is bad] � e−
m 0

16 + e−
n 0

96 � 2e−
n2/5

96 .

Finally, the union bound allows us to sum over all simulations for all nodes of the tree.

Pr [Any generated graph in any node is bad] � n1/5 � 2e−
n2/5

96 → 0 (as n → ∞)

It remains to observe that in the run of the actual algorithm, as opposed to our simu-
lation, the probabilities of generating a bad G1 or G2 at any step of the recursion are
even smaller than what we computed, since there might be even fewer vertices and fewer
edges present to start with than what we assumed in our derivation.

Solution 3

(i) Assume that n = |V | and m = |E|. Consider an arbitrary labeling e1, � � � , em on the
edges. Partition the vertex set V into two sets V1 and V2 of size n/2 at random. De�ne
Bernoulli random variable xi for 1 � i � m to be 1 if and only if ei 2 ∂(V1). There are�

n
n/2

�
possible ways to partition the vertex set into two sets of size n/2. Furthermore,

for an edge e = {v, u}, the number of ways to partition the vertex set into two sets of

size n/2 such that v and u are in di�erent sets is equal to 2
�

n−2
n/2−1

�
. Therefore,

Pr[xi = 1] =
2
�
n−2
n
2
−1

�
�
n
n
2

� =
2(n− 2)! (n

2
)! (n

2
)!

n! (n
2
− 1)! (n

2
− 1)!

=
n2

2n(n− 1)
�

1

2
.

Let random variable X =
∑m

i=1 xi = |∂(V1)| be the number of edges between V1 and V2.
By linearity of expectation, we have

E[X] = E[
m∑
i=1

xi] =
m∑
i=1

E[xi] =
m∑
i=1

Pr[xi = 1] �
m∑
i=1

1

2
=

m

2
.

This implies that there exists a partitioning of V into two sets of size n/2 with at least
m/2 edges in between. In other words, there is a balanced cut of size at least m/2.

1This is the only step that requires us to have made the arbitrary cut-o� of the tree in Figure 1, as

otherwise we would not be able to prove that the failure probability vanishes for every node.

5

(ii) By moving a vertex from one side to the other, the number of edges between the two
parts increases at least by one. Thus, after at most m swaps, the process terminates.

Furthermore, by applying m =
∑

v2V d(v)/2, where d(v) is the degree of vertex v, we
have

∂(V1) =

∑
v2V1

dV2
(v) +

∑
v2V2

dV1
(v)

2
�

∑
v2V

d(v)
2

2
=

m

2
.

Solution 4

Create a graph G with n vertices v1, � � � , vn representing the houses and edges between
every pair of vertices representing the potential pipes. Then add an additional \source"
vertex v which connects to vertex vi with cost Ci, so that the new graph G 0 has n + 1

vertices.

Now, compute an MST T in G 0. If vertex vi is connected to v in T , provide house hi

with a well and if there is an edge between vi and vj in T , set a pipe between hi and hj.
We claim this construction provides all houses with water and has the minimum cost.

First, we discuss it provides all houses access to water. Since T is a spanning tree, for
each vertex vi there is a path to v. Thus, a vertex vi is directly connected to v, which
implies that hi has its own well, or vi has a path to a vertex which is connected to v,
which implies hi has a pipe connection to a house with well.

Regarding the optimality, assume that there is a solution S with lower cost. We prove
then there exists a connected spanning subgraph, consequently a spanning tree, which
is lighter than T . Consider the subgraph G 0 = (V, E 0), where

E 0 := {{vi, v} : if hi has its own well in S for 1 � i � n} [

{{vi, vj} : if hi has a pipe to hj in S for 1 � i, j � n}.

It su�ces to show that this subgraph is connected. We show that each vertex has a path
to v. If hi has a well, then vi has an edge to v. Otherwise hi has a pipe connection
to a house which has its own well; in other words, vi has a path to a vertex which is
connected to v.

6

