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Solution 1

(a) The standard BasicMinCut algorithm can be implemented using an array con-
taining all the degrees of the vertices currently in the graph | for the purpose of
e�ciently selecting an edge u.a.r. for contraction. The only adaptation needed now
is that after each contraction, we scan this array and maintain a global minimal
degree ever seen. It is clear that this can be done in linear time per step and thus
in O(n2) time in total.

(b) We know from the lecture that contractions can only increase the size of a minimum
cut but never decrease it. Since the edges incident to any one vertex always form
a cut, each of the numbers that we could report in this algorithm corresponds to
some cut in the original graph, which readily implies the claim.

(c) For n � 2, the claim is empty. Let us now look at n > 2, let us �x a graph G
of size n and a cut C of size µ(G). What is the probability that the event we are
looking for occurs? There are two cases. Either, G contains a vertex of degree less
than (1+α)µ(G). In that case, no matter what the further recursion would yield,
we will always return a number at most that degree and thus the probability is
1. Or, all vertices in G have degree at least (1 + α)µ(G). Then, there are at least
(1 + α)µ(G) � n

2
edges in the graph and the probability that we contract one from

C is thus bounded by 2
(1+α)n

. But then with the complement of this probability,

the new graph G/e will still have a cut of size µ(G) and by induction, the claim
follows.

As for the calculation (which was not required), since pα(2) = 1, we just compute (for
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n su�ciently large)
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where (1) uses the inequality 1 − x � e−x−x
2
for x � 0.68 and 2

(1+α)i
< 2/3 < 0.68 for

all α > 0 and i � 3; where (2) uses that
∑∞

i=1
1
i2

= π2

6
and 2

1+α
< 2 for α > 0; and

where (3) uses Hn − 3/2 < lnn (the di�erence between lnn and Hn approaches the
Euler-Mascheroni constant γ, which is about 0.577).

Solution 2

Given a graph G = (V, E), let N be the number of minimum cuts in G. We want to show

that N �
�
n
2

�
where n := |V |.

Let C1, . . . , CN be the minimum cuts in G. Then, we know that for each i 2 {1..N}

Pr[Ci is found by Karger's algorithm BasicMinCut(G)] �
1�
n
2

� .

Now, we observe that for each two distinct indices i, j 2 {1..N} the events \Ci is found by
BasicMinCut(G)" and \Cj is found by BasicMinCut(G)" are disjoint (i.e. they never
happen at the same time). To see this, consider the graph obtained at the termination
of BasicMinCut(G). It has only two vertices and these vertices (together with the
"contraction history") uniquely determine a partition of the vertex set V. So we cannot
get two di�erent minimum cuts from one execution of the algorithm. Therefore, it follows
that

Pr[a minimum cut is found by BasicMinCut(G)]

=
N∑
i=1

Pr[Ci is found by BasicMinCut(G)] �
N�
n
2

� .
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Since Pr[a minimum cut is found by BasicMinCut(G)] � 1 (because it is a probabil-

ity!), we obtain N �
�
n
2

�
.

Solution 3

(a) Observe that there are three (potentially empty) sets of edges e = {u, v} that are
important in this scenario:

E1 :=
{
e = {u, v}

��u 2 A \ B and v 2 V \ (A [ B)
}

E2 :=
{
e = {u, v}

��u 2 (A \ B) [ (B \A) and v 2 V \ (A [ B)
}

E3 :=
{
e = {u, v}

��u 2 A \ B and v 2 (A \ B) [ (B \A)
}
.

It is easy to see that f(A\B)+f(A[B) = |E1|+ |E3|+ |E1|+ |E2|, while f(A)+f(B) �
2|E1|+ |E2|+ |E3|, the last inequality holding because some edges between A\B and
B \A may appear both in f(A) and f(B).

(b) Let k be the size of a minimum cut. Then by (a) we get f(A \ B) + f(A [ B) �
f(A) + f(B) = k + k, which together with f(C) � k for any set C 6= ;, V, implies
f(A \ B) = f(A [ B) = k.

(c) Suppose towards a contradiction that S 6= S 0, with S, S 0 � V and s 2 S\S 0 are such
that C(S) and C(S 0) are both minimum cuts and |S| = |S 0| is minimal. Note that as
t /2 S[S 0 because they are both cuts, we must have S[S 0 6= V, and so we can in a
similar way to part (b) prove that S\S 0 is a minimum cut with |S\S 0| < |S| = |S 0|,
a contradiction.

Solution 4

(a) Since G is connected, there are at least n − 1 edges. If there are at least n edges,
then Pr[µ(G) 6= µ(G/e)] � 1

n
since in the worst case the minimum cut is unique and the

probability of contracting a given edge is at most the claimed bound.

If there are only n − 1 edges the graph is a tree. Then contracting any edge keeps the
graph a tree with 1 fewer vertex which means that Pr[µ(G) 6= µ(G/e)] = 0 � 1

n
.

(b) BasicMinCut will succeed if it never contracts a given edge in the cut of size 1.
This happens with probability at least
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(c) A contraction of an edge changes the degree of at most 2 vertices. Therefore there is
still at least one vertex of degree k⇒ minimum cut is still of size k.
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(d) If there are 3 or more vertices of degree k we are done by (c). If there are 0 or 1 vertices
of degree k, then the number of edges is at least ((n−1)(k+1)+k)/2 = (n(k+1)−1)/2
so that when we �x a minimum cut of size k, the probability of contracting one of the
edges of the minimum cut is at most

k

(n(k+ 1) − 1)/2
=

2k

n(k+ 1) − 1
.

It remains to consider the case that there are two vertices of degree k. If these two
vertices are not adjacent, then there are two disjoint minimum cuts which means that
Pr[µ(G) 6= µ(G/e)] = 0. If they are adjacent, then the minimum cut may only change
if we contract one of the at most k − 1 edges between the two vertices (they can't be
connected via k edges since the graph is connected and n � 3). Since there are at least
(2k+ (n− 2)(k+ 1))/2 edges, the failure probability is at most

2(k− 1)

2k+ (n− 2)(k+ 1)
�

2k− 2

n(k+ 1) − 2
�

2k− 1

n(k+ 1) − 1
�

2k

2n(k+ 1) − 1
.

The second to last inequality holds because a := 2k− 1 � n(k+ 1) − 1 =: b and then

a− 1

b− 1
�
a

b
⇔ −b � −a⇔ a � b.
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