
Institute of Theoretical Computer Science

Bernd Gärtner, Rasmus Kyng, Angelika Steger, David Steurer

Algorithms, Probability, and Computing Solutions KW42 HS24

Solution 1

We prove the lemma by induction on the size n of the insertion permutation (or equiv-
alently, the resulting tree).

Induction base case. If n = 0 or n = 1, the lemma trivially holds.

Induction step. Let n � 2 and suppose that the lemma holds for all insertion permu-
tations of size strictly less than n. Let π = (π(1), . . . , π(n)) be a permutation drawn
uniformly at random from Sn. The �rst element π(1) will become the root of the tree Tπ.
Since the distribution of π(1) is u.a.r. from [n], the root of the tree is chosen uniformly
at random, as required by the construction of ~B[n].

Now let us tackle the two subtrees of the root: Let k 2 [n]. We want to show that,
conditioned on π(1) = k, the distribution of the left subtree of the root is the same as
~B{1,...,k−1}, and the distribution of the right subtree of the root is the same as ~B{k+1,...,n}.
To this end, let π− be the sequence of elements in π smaller than k, and let π+ be the
sequence of elements in π larger than k. Note that the insertion sequence will send the
keys in π− (π+) in exactly this order to the left (right) subtree of the root. Since π− and
π+ are uniformly random permutations of their respective element sets {1, . . . , k−1} and
{k + 1, . . . , n}, we can apply the induction hypothesis to obtain that the left and right
subtrees of the root are distributed just as we stated.

We conclude that this process produces a tree Tπ that is distributed like ~B[n].

Solution 2

This problem lends itself to a straightforward solution using the \locus approach" as
described in the lecture. First we have to �nd the regions of equal answer. While it is
trivial to see where the regions with the same closest point lie, it is not so obvious for
the closest pair. Note that when we move a query point from −∞ to +∞, we will see
each pair {ai, ai+1} as the correct answer for some interval. The transition from {ai−1, ai}

to {ai, ai+1} occurs as soon as ai+1 is closer to q than ai−1. The threshold position for
this is obviously at (ai−1 + ai+1)/2. Therefore we may proceed as follows.

First sort the n elements ai 2 S such that a0 < a1 < � � � < an−1. Then partition the real
line into the following intervals and points:

(−∞, c1), c1, (c1, c2), c2, (c2, c3), c3, . . . , cn−2, (cn−2,∞),

1

where ci := (ai−1+ ai+1)/2 for every i 2 {1..n−2}. The next picture schematically shows
the construction.

a0 a1 a2 a4

c1 c2 c3

{a0, a1} {a2, a3}

a3

{a1, a2}
{a2, a3}, {a3, a4}{a0, a1}, {a1, a2}

{a1, a2}, {a2, a3}

{a3, a4}

Each interval is associated with a nearest neighbor pair. At the points ci, there are two
possible pairs and the way the task is described, the answer for ci = q is ambiguous as
both {ai−1, ai} and {ai, ai+1} ful�ll the condition.

Given this data structure and a query point q, a pair of nearest neighbors can be found
in O(logn) time. Preprocessing can be done in O(n logn) time by any optimal sorting
algorithm and O(n) space.

Solution 3

Let us �rst give the proof the exercise asked for. Then we would like to elaborate on the
purpose of this exercise.

Proof. Observe that ` : y = 2kx − k2 is the tangent of the parabola g : y = x2 at point
(k, k2): The slope of line ` is 2k which is the derivative of g at position k and (k, k2)
lies on both, ` and g. Thus k = ai for any i 2 {0, . . . , n− 1} implies that (ai, a

2
i) lies on

` and the polygon C. For the other direction let us assume that C intersects ` at some
point p. Because the parabola is a strictly convex function1, g touches C only at the
points (ai, a

2
i). Therefore by also using that ` is a tangent of g, we get p = (ai, a

2
i) for

some i 2 {0, . . . , n− 1}.

This exercise showcases a way to prove a lower complexity bound for a geometric prob-
lem. Such so-called negative results (\there is no algorithm better than...") are often
very hard to prove because the argument has to go over all possible algorithms, a family
of objects so complex that we are today hardly able to understand it. In the present

1Recall: a function f : R → R is strictly convex i� 8λ 2 (0, 1), 8x1, x2 2 R, x1 6= x2,

λf(x1) + (1− λ)f(x2) < f
�
λx1 + (1− λ)x2)

�
.

2

case, the above geometric considerations show that deciding whether a (query) line hits a
(preprocessed) convex polygon consisting of n points cannot be any easier than deciding
whether a (query) number q 2 R is contained in a (preprocessed) set of n keys S � R.
Because if that were easier, then we could preprocess the set S of keys by generating the
points P := {(x, x2)|x 2 S}, preprocess them as a polygon and then each time a query
q 2 R is asked, instantiate the line lq : y = 2qx − q2 and use the (faster) algorithm to
check whether lq hits it. Thence if we have a lower bound for the e�ort needed to answer
the query q 2 S, the same bound applies to the polygon and query line problem. So do
we have such a lower bound?

You have learnt in your �rst year already that searching for a key in a set of n keys needs
a least Ω(logn) steps, which is also achievable, e.g. through binary search. Searching
here means to say for the query number q, which is the next-smallest (or next-largest,
or both) key in S. The argument there was the following: Since there are at least
n+ 1 possible answers the algorithm needs to be able to give, at least dlog(n+ 1)e bits
of information have to be acquired to distinguish between them. So if the only thing
we can do with the numbers is comparing two of them, we need at least dlog(n + 1)e
comparisons.

Does this now imply together with the exercise that deciding whether a query line hits
a polygon needs at least Ω(logn) steps and the algorithm we saw in the lecture is
therefore optimal? Not yet really, we have to be extremely careful. Here are two
aws:
�rstly, we have proved that deciding whether a query line hits a polygon is as di�cult as
deciding whether a real q is in a set of reals S. That's not the same as searching, it is a
decision problem. Nobody asks you to say which is the next-smallest or next-largest key
in S, you just have to say yes or no. That might be easier than the lower bound we know.
Secondly, what was proved in earlier classes was that searching in a set S of comparable
keys which you cannot do anything else with but comparing them takes Ω(logn) of
these comparisons. But here we do not have such a set of keys, we have real numbers.
There is more we can do with real numbers than comparing. The computational model
we are considering when designing geometric algorithms is usually a model where basic
operations like addition, subtraction, multiplication, division and taking roots can be
evaluated in constant time. So if we really want to prove that our algorithm is optimal
in this powerful model of computation, we have to prove that every algorithm that just
decides whether a number q 2 R is in a preprocessable set S of keys carries out at least
Ω(logn) basic arithmetic operations.

Proving this is very cumbersome and would exceed the scope of this course by far. But
Michael Ben-Or has done it in [1].

Theorem 1 (Ben-Or). Consider a computational model operating on reals by executing
the basic operations addition, subtraction, multiplication, division, taking of the
square root and comparisons (<, > and =). Then for any preprocessed set S � R
of size |S| = n, any algorithm answering for a query q 2 R whether q 2 S needs to
carry out in the worst case at least Ω(logn) basic operations.

3

Using this, we can infer that our O(logn) time algorithm for the line-hitting-polygon
problem is in fact best possible. Even though the result turned out as expected, it has
to be distinctly understood that this was by no means a priori obvious.

Solution 4

The lemma contains a chain of two inequalities:∑
v inner node

|�Sv| � 2 �
∑

v inner node

|Sv| � 2n
2.

The second inequality is easy to derive: The number |Sv| of coordinates for level v can be
bounded by the number of edges that belong to level v, and the total number of edges
does not exceed n2.

So it remains to look at the �rst inequality. Let us �rst look at an example, so that we
may believe the statement. Below we have depicted a tree to store n = 7 levels: On
the left-hand side, the tree for the original sets Sv, and on the right-hand side, the tree
with the `enhanced' sets �Sv. We have annotated the nodes with the number (|Sv| and
|�Sv|, respectively) of x-coordinates stored in that node.

n7

n5 n6

n3 n4n2n1

n7 + n5+n6
2

+ n1+n2+n3+n4
4

n5 + n1+n2
2

n6 + n3+n4
2

n3 n4n2n1

Indeed our example has∑
v inner node

|�Sv| =

1+

1

2
+
1

4

!
(n1 + n2 + n3 + n4) +

1+

1

2

!
(n5 + n6) + n7

� 2 (n1 + n2 + n3 + n4 + n5 + n6 + n7)

= 2 �
∑

v inner node

|Sv|.

The example suggests that we should group the nodes of the tree by their depth. (We
refrain to speak of the `levels' of the tree, because that will almost certainly cause
confusion vis-�a-vis the levels v of the line arrangement). Thus, let h denote the height
of the tree and for 0 � i � h let

mi :=
∑

v inner node
at depth i

|Sv|, �mi :=
∑

v inner node
at depth i

|�Sv|.

4

Now

∑
v inner node

|�Sv| =
h∑
k=0

�mk � mh +
h−1∑
k=0

mk +

�mk+1

2

!
=

∑
v inner node

|Sv|+
1

2
�
∑

v inner node

|�Sv|−
�m0

2

which yields the claim.

References

[1] Michael Ben-Or. Lower bounds for algebraic computation trees. In Proceedings of
the Fifteenth Annual ACM Symposium on the Theory of Computing STOC, pages
80-86, 1983.

5

