
Institute of Theoretical Computer Science

Bernd Gärtner, Rasmus Kyng, Angelika Steger, David Steurer

Algorithms, Probability, and Computing Solutions KW48 HS24

Solution 1

(a) By the de�nition of the determinant and by linearity of expectation, we have

E
�
det(B)

�
=
∑
π2Sn

sign(π)E
h
b1,π(1)b2,π(2) . . . bn,π(n)

i
.

Now let Z � Sn be de�ned as

Z := {π 2 Sn|a1,π(1)a2,π(2) . . . an,π(n) = 1},

that is the set of transversals that do not contain a zero element of A. We then
have that

E
�
det(B)

�
=
∑
π2Z

sign(π)E
h
ε1,π(1)ε2,π(2) . . . εn,π(n)

i
,

and by independence of the εi,j,

E
�
det(B)

�
=
∑
π2Z

sign(π)E
h
ε1,π(1)

i
E
h
ε2,π(2)

i
. . . E

h
εn,π(n)

i
= 0,

as each expectation is zero.

(b) This calculation is more involved. We �rst note that by de�nition (and reusing the
set Z from (a)),

E
h
(det(B))2

i
= E

2
664

0
B@
∑
π2Z

sign(π)ε1,π(1)ε2,π(2) . . . εn,π(n)

1
CA
2
3
775.

Expanding the multiplication and applying linearity of expectation yields

E
h
(det(B))2

i
=
∑

π1,π22Z

sign(π1)�sign(π2)�E
h
ε1,π1(1)ε1,π2(1)ε2,π1(2)ε2,π2(1) . . . εn,π1(n)εn,π2(n)

i
.

Now we start disentangling dependencies. First of all, since the εi,j are independent
from one another, we can separate the expectation as

E
h
(det(B))2

i
=
∑

π1,π22Z

sign(π1)�sign(π2)�E
h
ε1,π1(1)ε1,π2(1)

i
E
h
ε2,π1(2)ε2,π2(1)

i
. . . E

h
εn,π1(n)εn,π2(n)

i
.

1

Now we observe that

E
h
εi,jεi,k

i
=

{
1 if j = k

0 otherwise.

For that reason, all the summands with π1 6= π2 have at least one zero factor in the
product and thus vanish. Remaining are the summands where the permutations
are equal and thus

E
h
(det(B))2

i
=
∑
π2Z

sign2(π) � E
h
ε21,π(1)

i
E
h
ε22,π(2)

i
. . . E

h
ε2n,π(n)

i
= |Z|.

On the other hand, obviously

per(A) =
∑
π2Z

1 = |Z|,

which establishes the claim.

Solution 2

We are given an algorithm A for testing the existence of a perfect matching in a given
graph, with running time at most T(n) for any n-vertex graph.

(a) We want to �nd a perfect matching of a graphG by using repeated calls to algorithm
A (supposed that G has a perfect matching).

First we call A(G). If it says \No", G has no perfect matching. Done. If the
algorithm says \Yes" G has a perfect matching. We have to �nd one.

Choose an arbitrary edge e of the graph G. Now we are going to check whether
e is part of every perfect matching of G. To do that, consider deleting e from G.
Denote by G \ e the result of the deletion. Then we call A(G \ e). We have two
cases.

Case 1. If the algorithm says \No", then e is a part of every perfect matching of
G (since G contains a perfect matching but G \ e does not).

In this case we keep e as an edge of the perfect matching that we will output later,
and continue with the remaining graph, i.e., the graph obtained by removing the
vertices incident to e (because they are already matched by e).

2

Case 2. In case the algorithm says \Yes", G\e contains a perfect matching, which
is also a perfect matching of G.

Therefore we continue with G \ e to �nd a perfect matching in G \ e.

This is the idea of our procedure, as given by the following Algorithm 1 in pseu-
docode.

Algorithm 1: Finding a Perfect Matching in a Graph

Input: a graph G = (V, E)
Output: a perfect matching M of G if exists and ‘No’ if not

IF A(G) = ‘No’ THEN

RETURN ‘No’

ELSE

M← ;

WHILE M is not a perfect matching of G DO

e← an arbitrary edge in E

IF A(G \ e) = ‘No’ THEN

M←M [{e}

G← the graph obtained by removing the vertices incident to e

ELSE

G← G \ e

END

END

RETURN M

END

The correctness of the algorithm follows from the discussion above. What is the
running time? One call to A(G) takes T(n) time. Then, we will potentially enter
the while-loop. In each iteration of the loop at least one edge is removed from the
graph and the number of vertices in the graph is always at most n. The time we
need for the deletion of an edge or a vertex depends on a data structure used in the
test A, so let us denote it by t(n), when we are dealing with a graph with n vertices.
Then the worst-case total running time is at most T(n) +O(m � (t(n) + T(n))) =
O(mT(n)). Here, m := |E| as usual and we safely assume t(n) < T(n).

If we use the algorithm from the lecture as A, we get a running time O(n4.376).

(b) How can the above algorithm be used for �nding a maximum matching in a given
graph?

Let G be a graph with n vertices. The basic step is to decide whether G has a
matching of size k (i.e., consisting of k edges). With this subroutine, we search
for the maximum k by performing the binary search on {0..bn/2c} (note that if
G contains a matching of size k then it also contains a matching of smaller size).

3

Therefore, the overall time to decide the size of the maximum matching will be
O(logn) multiplied by the time needed to decide whether G contains a matching
of a given size.

Let us �x k 2 {0..bn/2c}. To decide whether G has a matching of size k, we
construct an auxiliary graph G� from G as follows. The vertex set of G� is the
vertex set of G plus additional n− 2k vertices. The edge set of G� is the edge set
of G plus the following edges: we connect every vertex of G to each of the new
vertices by an edge. This is our construction of G�:

Lemma 1. G has a matching of size k if and only if G� has a perfect matching.

Proof. Assume that G has a matching of size k. Take such a matching. There are
n− 2k vertices in G which are not incident to any edge of the matching. Then, in
G� these vertices can be matched with the additional vertices, which gives a perfect
matching of G�. Conversely, if we have a perfect matching of G�, by removing the
additional n− 2k vertices and the edges incident to them we obtain a matching in
G of size k.

In this way, deciding if G has a matching of size k reduces to deciding whether G�

has a perfect matching. We observe that G� has 2n−2k vertices andm+n(n−2k)
edges, which are at most 2n and m+n2 = O(n2) respectively. Therefore, running
the above binary search to �nd the appropriate maximum k and applying the result
of (a) to �nally �nd a matching of size k we can �nd a maximum matching of G
in O(log (n)T(2n) + n2T(2n)) = O(n2T(2n)) time.

Solution 3

(a) Let k 2 N be such that 2k is the smallest power of two that is at least N, i.e.,
2k−1 < N � 2k. Take k random bits from the stream and interpret the sequence
of k random bits as an integer i, written in its binary representation. Because the
stream consisted of random bits, the number i + 1 is uniformly distributed in the
set {1, . . . , 2k}. If i+1 � N, then i+1 is uniformly distributed in {1, . . . ,N} because
for every j 2 {1, . . . ,N} it holds that

Pr
�
j = i+ 1 | i+ 1 � N

�
=

Pr [j = i+ 1 and i+ 1 � N]

Pr [i+ 1 � N]
=
1/2k

N/2k
=
1

N
.

To sample the required number we would repeat the above process, always sampling
a new integer i 2 {1, . . . , 2k} by using k new random bits from the stream until

4

i+1 2 {1, . . . ,N}. The success probability of one such sampling is p := N
2k
> 2k−1

2k
= 1

2

and di�erent repetitions are independent of each other. The number of repetitions
needed until succeeding is geometrically distributed with parameter p. Therefore
in expectation after 1

p
< 2 repetitions we will succeed. We conclude that the

expected number of bits used is at most 2 � k = O(logN).

(b) We will �rst describe our algorithm SampleMatching for the problem and then
prove its correctness and show that it satis�es the runtime requirement and that
it uses only the required number of random bits. Given a graph G = (V, E) and
an edge e 2 E we let Ge denote the graph attained from G by removing both
endpoints of e and all their adjacent edges from G. For a vertex v 2 V we denote
by δ(v) � E the set of all edges adjacent to v. We let Oracle(G) denote the oracle
function that takes a graph and returns the number of perfect matchings in G.
Our algorithm SampleMatching for the problem is de�ned below.

Input: A nonempty simple graph G = (V, E).

Output: A uniformly random perfect matching M � E in G or ; if there is no perfect matching.

SampleMatching(G):

1. Check with the oracle that G has at least one perfect matching. If not, return ;.
2. If |V | = 2, return the single edge in G.
3. Let v 2 V be an arbitrary vertex and �x an ordering of δ(v) = {e1, . . . , es}.
4. For every i = 1, . . . , s let Ni := Oracle(Gei) and let N :=

∑s
i=1Ni.

5. Using (a) choose a uniformly random integer k 2 {1, . . . ,N}.

6. Let j be the least index so that
∑j

i=1Ni � k.
7. Return {ej} [SampleMatching(Gej).

Correctness proof. We show that SampleMatching really outputs a uniformly
random perfect matching given that there is at least one such matching. If G has
an odd number of vertices or no perfect matching is recognized in step 1 and is
correctly handled so we need to prove correctness only for graphs with at least one
perfect matching.

We proceed by induction on n. The base case n = 2 is handled correctly in step
2 since there is a unique perfect matching, the single edge. Assume now that the
algorithm is correct for all graphs with at most n−2 vertices, n even, and consider
a graph G with n vertices. Fix also some perfect matching M in G. We observe
�rst that the number N computed in step 4 is the number of perfect matchings in
G. This is because every perfect matching of G contains exactly one of the edges
e 2 δ(v) and because every perfect matching M 0 that contains some edge e 2 δ(v)
has the property that M 0 \ {e} is a perfect matching in Ge.

Let ` be such that M contains the edge e` 2 δ(v). For the algorithm to output M
it has to be that ` = j and that the recursive call of step 7 returns the matching
M \ {e`} when called on the graph Ge` . Notice that Pr[j = `] = N`

N
since there are

N` values k 2 {1, . . . ,N} for which ` is the least index satisfying the condition in

5

step 6. By induction we have

Pr[SampleMatching(Gej) =M \ {e`} | j = `] =
1

N`

.

Therefore the probability that the algorithm returns M is N`

N
� 1
N`

= 1
N
which is

uniform across all perfect matchings. This concludes the correctness proof.

Runtime analysis. In steps 1-3 we do one call to the oracle that uses time T(n) and
additionally we spend only poly(n) time. In step 4 we do at most n−1 calls to the
oracle, each taking time T(n). Because of part (a) step 5 takes time O(logN) in
expectation which is poly(n) because N is certainly at most n! � nn. Step 6 takes
also poly(n) time. Notice that when we recurse in step 7 we reduce the number
of vertices by 2 so the depth of the recursion is O(n). Therefore the total number
of oracle calls is at most (n− 1) �O(n) = O(n2) and the total expected runtime is
also bounded by O(T(n)poly(n)) as required.

Random bits. We already argued that N � nn which implies that the number of
random bits we use in step 5 is in expectation O(logN) = O(n logn). We do such
sampling O(n) times across the recursive calls so the total number of random bits
we use is O(n2 logn).

(c) The key ingredient to solving this problem is to realize that in a planar graph there
always exists a vertex whose degree is at most 5. This is because the number of
edges in a planar graph with n vertices is at most 3n − 6. Therefore the average
degree is at most 2(3n−6)

n
< 6 which implies the claim. We change the algorithm

from part (b) by choosing the vertex v in step 3 as a vertex whose degree is at
most 5. The correctness of the algorithm stays unchanged.

Runtime analysis Since in every recursive step there are at most 1+5 = 6 oracle calls,
the total number of oracle calls across the algorithm execution is O(n). Because
there is always a vertex of degree at most 5, the number of perfect matchings in
a planar graph is at most 5n/2. This means that N in step 4 of the algorithm is
upper bounded by 5n/2 and the expected runtime of steps 4-6 is therefore at most
T(n)+O(logN) = 5T(n)+O(n). Note also that steps 1-3 also take only linear time
plus time T(n) since planar graphs have only linearly many edges and in particular
the vertex of degree at most 5 can be found in linear time.

If we let t(n) denote the expected runtime of the modi�ed algorithm SampleMatch-

ing we have deduced that t(n) satis�es the recurrence

t(n) � 6T(n) +O(n) + t(n− 2).

More concretely let c be a constant such that for n � C, for some large enough
constant C, it holds that

t(n) � 6T(n) + cn+ t(n− 2).

Let us prove by induction that t(n) � dnT(n) for some constant d when n � C.
We don't need to prove the cases n < C since these can be solved in constant time

6

by enumerating all matchings (because C is constant). Also the base case n = C

be made to hold by choosing d large enough. For the inductive step we use the
recurrence formula together with the induction assumption to conclude that

t(n) � 6T(n) + cn+ d(n− 2)T(n− 2)

� 6T(n) + cn+ d(n− 2)T(n)

= 6T(n) + cn− 2dT(n) + dnT(n)

� dnT(n).

Above T(n− 2) � T(n) since T(n) 2 Ω(n). The last step also follows by choosing
d large enough because T(n) 2 Ω(n) then implies that 5T(n) + cn− 2dT(n) < 0.

Random bits. In one recursive step we use by (a) and our previous remarks at most
O(log 5n/2) = O(n) random bits in expectation. Since there are at most n recursive
steps, the total number of random bits is at most O(n).

7

