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In computer science we use the term bootstrapping for the process of 

building complex systems from simple ones’. In this chapter we consider 

two examples that show how such an approach can be used to improve the 

time complexity of the algorithm. Before we dive into details we outline 

the two approaches that we will consider. 

For a (randomized) algorithm A we use t,(n) to denote the maximum 

running time for inputs of size n. Similarly, we denote by p,(n) the prob- 

ability that, for inputs of size n, algorithm A returns the correct result. If 

the algorithm is clear from the context, we usually omit the use of A and 

simply write t(n) resp. p(n). 

Suppose we can show that the function t(n) satisfies the following re- 

cursion?: 

t(n) <an+Pt{n/2), forn>2 and t(1) =1. 

As you may recall from the introductory lectures, the value of 8 (but not 

the one of «) has an important influence on the asymptotic value of t(n). 

  

lhootstrap = Schniirsenkel 

In order to be precise we would need to use Gauss brackets; to keep things simple we 

ignore this issue here and instead tacitly assume that n is a power of 2.
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Indeed, we have (recall that we assumed that n is a power of 2): 

t(n) = an + Bar + Bea +... + Bl ™ ax t(1). 
2 4 ae 

=1 

If 8 < 2, then we can use ) °8"(6/2)' < Y™(B/2)' = 1/(1 — B/2) to 
deduce that t(n) = O(n) is linear. If 8 = 2, then each of the log,n 

summands is exactly equal to an and we thus have t(n) = O(nlogn). If 

8 > 2, then the summands are increasing and the asymptotic solution is 

given by the largest term, i.e. t(n) = O(n'82%), implying, for example, that 

for 8 = 2* we have that t(n) = O(n‘). We conclude: in analyzing recursive 

algorithms we have to be very careful in keeping track of constants. In fact, 

our main goal in Section 1.1 is to reduce (in a recursion similar to the one 

from above) the value of 6 from 1 to a constant smaller than one (which 

in turn reduces the runtime of the algorithm by a log-factor). 

In our second example we will consider a (randomized) algorithm that 

reduces an instance of size n to an instance of size n — 1. However, due 

to the randomness of the algorithm, assume that the probability that this 

reduction is correct (meaning that the correct solution for the original prob- 

lem can be read off from the reduced problem) is p(n) = 1— 1/n. If we 

use this algorithm recursively to compute the solution for a problem of size 

n, then the probability that we can read off the correct solution from the 

obtained solution of size 1 is given by the product of all the individual 

probabilities (as we need that all reductions are correct). Thus, the overall 

probability is only 

g—+.q-—4).....g Hal 
Tn n— 2 Tn 

Again, you may recall from the introductory lectures, that this means that 

we have to repeat the algorithm a linear number of times, to reduce the 

error probability to a constant. Our goal for Section 1.2 is to show that we 

actually can do better. 

Notation. As usual, we denote by G = (V,E) an undtrected graph (without 

loops) and use n = |V| for the number of vertices and m = |E| for the 

number of edges. Usually, we consider graphs without multiple edges. If 

we do allow multiple edges (in this chapter in Section 1.2) we will say so 

explicitly.
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Edge contraction. In this chapter we repeatedly use an operation called 

edge contraction. Let G be a (multi)graph and let e = {u,v} be an edge 

of G. The contraction of e means that we “glue” u and v together into 

a single new vertex and remove loops that may have arisen in this way 

(multiple edges are retained). The resulting graph is denoted by G/e. 

This is illustrated in the following picture: 

G G/e 

new vertex 

Note that every edge contraction reduces the number of vertices of the 

graph by exactly 1 and the number of edges by at least 1. 

1.1 Computing Minimum Spanning Trees in Linear Time 

Given a connected graph G = (V,E) with weights w : E — R on the edges, a 

minimum spanning tree is a subgraph T = (V,E+) of G on the same vertex 

set such that T is a tree and such that the sum > .--, w(e) of the weights 

of the edges in T is as small as possible. 

It is well known that a minimum spanning tree can be computed in time 

O(nlogn+m) by Prim’s algorithm (together with Fibonacci heaps) and in 

O(mlogn) by Kruskal’s algorithm (together with a union find data struc- 

ture). In this section we describe a randomized algorithm that computes a 

minimum spanning tree in O(m). 

Before we start we collect some well known (and easy to prove) facts on 

minimum spanning trees (MST): 

e If the weight function w: E — R is injective (i.e., no two edges have 

the same weight), then the graph G = (V,E) contains exactly one 

MST. To make our life easier we will assume this case from now on. 

(Note that this is not a strong assumption, as by adding to each edge 

weight a randomly chosen (small) value ¢;, this property will hold 

with very high probability.)
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e For every vertex v € V let enin(v) denote that edge incident to v that 

has minimum weight (note that by our assumption on the uniqueness 

of the weights the edge emin(v) is uniquely defined). Then all edges 

€min(v) for v € V belong to the MST. 

e For every cycle C let @nax(C) denote the edge in C that has maximum 

weight. Then no edge e@max(C) can belong to the MST. 

The last observation can easily be turned into an algorithm that checks 

whether a given tree T = (V,Er+) is a minimum spanning tree in the graph 

G = (VE). Indeed, every edge e € E that does not belong to T will close a 

unique cycle with T that consists of e and tree edges. We call such an edge 

T-heavy, iff all other edges in this cycle have a lower weight. Clearly, 

T isa minimum spanning tree << _ all edges e€ E\ Er; are T-heavy. 

Turning this idea into an efficient algorithm is tedious and requires clever 

use of appropriate data structures. But it can be done: there exists an 

algorithm that finds all T-heavy edges in time O(m), cf. King: A sampler 

minimum spanning tree verification algorithm, Algorithmica, 1997, 263- 

270. In this section we use FINDHEAVY to denote such an algorithm. 

The second observation from above is the basis of Bortivka’s algorithm 

for computing an MST: 

  

Boruvka’s ALGORITHM(G): 

Vv € V: compute emin(v), insert emin(v) in the MST and contract emin(v) 

(removing loops and double edges by keeping only the cheapest edge) 

  

  recurse (until the graph contains only one vertex) 
  

Every iteration of Bortivka’s algorithm can be implemented in O(m) 

time and reduces the number of vertices by at least a factor of two. Thus, 

the number of iterations is bounded by log, n and we thus obtain a total 

running time of O(mlogn). Our goal for this section is to get rid of the 

factor logn. 

The problem with Borivka’s algorithm is that we reduce the number 

of vertices by factors of two, but we have no control on the reduction of 

the number of edges: we can only guarantee that we reduce m edges to at 

most m— n/2 edges, which, for m > n, is still roughly equal to m.
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In order to attack this problem we first observe that Bortivka’s algorithm 

also works for cases in which the graph is not connected. It then returns 

minimum spanning trees for each component. Henceforth we call such a 

collection of minimum spanning trees a minimum spanning forest (MSF). 

With this notation at hand we adapt Borivka’s algorithm as follows: 

  

RANDOMIZED MINUMUM SPANNING TREE ALGORITHM(G): 

Perform three iterations of Boriivka’s algorithm (which reduces 
  

the number of vertices to at most n/8) 

In the new graph: 

Select edges with probability 1/2 and compute recursively 

an MSF for the graph consisting of the selected edges. 

Call this forest T. 

Use FINDHEavy to find all unselected edges that are not T-heavy. 

Add all edges that are not T-heavy to T and delete all other edges. 

recurse (until the graph contains only one vertex)       

The correctness of the algorithm is immediate: we only delete edges 

during Bortivka steps (which is ok, as they close cycles with edges that we 

know have to be in the MST) and edges that are T-heavy (which is ok, as 

we know that they are the heaviest edge in a cycle and thus cannot belong 

to the MST). 

We will show below that in the second step the expected number of 

edges that are not T-heavy can be bounded by n/8. Assuming this for now 

the expected running time of the modified algorithm can easily be shown 

to be linear by induction as follows. 

Assume we want to show that the expected running time of the modified 

algorithm is bounded by C(n+m) for an appropriate constant C > 0. Then 

we have to show: 

Cg(n+m)+m-+C(n/8+m/2)+ Cry (n/8+m)+C(n/8+n/4) < C(n+m), 

which is easily seen to be true for an appropriate choice of C. Here Cg(n + 

m) bounds the running time of the three Bortivka steps, m corresponds to 

the selection of the edges, C(n/8 + m/2) bounds the running time of the 

recursive call in the second step of the algorithm, Cry(n/8 + m) bounds 

the running time of the FINDHEavy algorithm for computing the T-heavy
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edges, and C(n/8+7/4) corresponds to the recursive call in the third step 

of the algorithm (for a graph with at most n/8 vertices and (in expectation) 

at most n/8 + n/8 edges). 

It thus remains to show that the expected number of edges that are not 

T-heavy (and that we therefore have to keep) can indeed be bounded in 

the claimed way. To this end consider a graph G = (V,E) on n vertices and 

m edges and assume that the edges are ordered according to their weight: 

w(e1] <...< w(e,). Now we run Kruskal’s algorithm on this graph and 

intertwine the selection of a random subgraph with the run of Kruskal’s 

algorithm. That is, we will compute: (2) a subgraph G' = (V,E’) of G such 

that each edge of G belongs to G’ independently with probability 1/2, (22) 

a minimum spanning forest T for G’, and, finally, (722) a subset F C E \ E’ 

that contains all edges that are not T-heavy (and possibly some more). 

From the run of the algorithm it will follow that the expected number of 

edges in F is bounded by n, which will then conclude the proof’. 

Here is a formal description of this algorithm: 

  

  

(1) Let E’ =T=F=0 
(2) fori =1,...,m do: 

(3) if e; connects two components of T then 

(4) Flip a fair coin in order to decide whether e; belongs to G’. 

If so, let E’:= E’ +e; and T :=T +e, otherwise let F:=F + e. 

(5) else 

(6) Flip a fair coin in order to decide whether e; belongs to G’. 

(Observe that e; is T-heavy and thus cannot belong to F.)   
  

Note that we can add at most n — 1 edges to T during the execution of 

(4), as T is a spanning forest in a graph on n vertices. We claim that this 

implies that we add in expectation at most n edges to F. Observe that in 

each iteration of the if-case we put edges randomly either into T or into 

F. That is, the expected number of edges in T and in F will be the same 

at any point in time. Our claim thus seems at least intuitively plausible. 

Formally, we have to be more careful, as the total number of iterations of 
  

’Note that, for simplicity of notation, we assumed here that the graph that we consider 

contains n vertices. Within the randomized algorithm from above the graph contains at 

most n/8 vertices, the n thus corresponds to n/8, which is exactly the bound that we 

wanted to show.
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the if-statement depends on the outcome of the coin flips. Exercise 1.1 

makes this precise and asks you to complete the proof of our claim. 

The algorithm in this section is from Karger, Klein and Tarjan, A random- 

ized linear-time algorithm to find minimum spanning trees, Journal of 

the ACM, 1995, 321 - 328. 

Exercise 1.1. Consider a sequence (Xi)icn of independent Bernoulli ran- 

dom variables with Pr[X; = 1] = 1/2. For an integer K we define the 

random variable T as the first point in time where we have seen K 

zeros. That 1s, we let 

T := min{n € N | {ti © N| X; = 0}| > K}. 

By Z we denote the number of ones that we have seen by tume T. That 

1s, 
r 

Zi= Xie 

isl 

(i) Show that E[Z] =K. (ii) Argue why this implies that the expected 

number of edges in F 1s at most n. 

1.2 Computing Minimum Cuts in O(n2) time 

A cut* in a graph G = (V,E) is a subset C C E of edges such that the graph 

(V,E\ C) is disconnected. A minimum cut is a cut with the minimum 

possible number of edges. A graph may have several minimum cuts. We 

let u(G) denote the size of a minimum cut in G. 

In the lecture Algorithmen und Wahrscheinlichkeit you saw two ways 

to solve this problem. One can use a flow-based algorithm to find a mini- 

mum cut that separates two given vertices s and t and apply this algorithm 

for an arbitrary but fixed vertex s and all other n — 1 vertices t € V \ {s}, 

resulting in an O(n‘ logn) algorithm. We also saw a randomized algorithm 

that solves the problem with high probability in O(n*) time. Our aim 

in this chapter is to improve this latter algorithm to achieve a runtime 

of O(n*(logn)?)>. For sake of completeness of these lecture notes we first 

review the O(n*) algorithm. 
  

“More precisely one might speak about edge cuts. Sometimes verter cuts are also 

considered, which are subsets of vertices whose removal disconnects the graph. 

5To emphasize the main term of the running times of algorithms one often uses the
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1.2.1 Basic Version 

In this section we tacitly assume that the input graph is connected; we do 

allow multiple edges. The algorithm maintains a multigraph and performs 

successive edge contractions. We assume that the current multigraph is 

represented in such a way that we can 

e perform an edge contraction in O(n) time, 

e choose an edge uniformly at random among all edges of the current 

multigraph in O(n) time, and 

e find the number of edges connecting two given vertices in O(1) time 

(actually, O(n) would be sufficient as well). 

Designing a suitable data structure is not trivial, but it is not difficult either 

and we leave it as an exercise. 

Minimum cuts and contraction. The correctness of the algorithms will rely 

on the following simple observation, whose proof is left to the reader (and 

we strongly advise the reader to think this over carefully). 

Observation 1.1. Let G be a multigraph and e an edge of G. Then 

u(G/e) > u(G). Moreover, if there exists a minimum cut C in G such 

that e g C, then u{G/e) = u(G). 

The following algorithm repeatedly chooses random edges of the current 

graph and contracts them, until only two vertices are left: 

  

BasicMinCut(G): 

while G has more than 2 vertices do 

pick a random edge e in G 

G+e¢G/e 

end while 

return the size of the only cut in G     
The contracted edge is always picked uniformly at random among all edges 

of the current graph. 
  

notation O(-}. This notation is similar to the Big-Oh notation, except that we hide not 

only constants but also log-factors. Thus, O(n*(logn)}*) can be abbreviated by O(n7}, cf. 

the title of this section.
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By the first part of Observation 1.1, the algorithm always returns a 

number at least as large as u(G). If C isa minimum cut in the input graph 

G, and if we never contract an edge of C during the whole algorithm, then 

the returned number is exactly u{G), by the second part of the observation. 

At first sight it looks foolish to hope that no edge of C is ever contracted. 

After all, to this end, the random choice would have to come out “right” 

(avoid C) in each of n—2 steps. Common sense suggests that making n—2 

successful random choices in a row is extremely unlikely. The beautiful 

insight is that in the considered case, a sequence of such “right” choices, 

while somewhat unlikely, is actually not extremely unlikely. 

Lemma 1.2. Let G be a multigraph with n vertices. Then the probability 

of u(G) = u(G/e) for a randomly chosen edge e € E(G) is at least 1 —2, 

Proof. Let us write k = u(G) and let us fix a minimum cut C in G, with 

|C| = k. We note that every vertex of G has degree at least k, and thus 

|E(G)}| > a, By Observation 1.1, the probability of u(G) = u({G/e) is 

bounded below by the probability of e ¢ C, which equals 

1 5, ky 2 
IE(G)|~ 

Next, for a multigraph G, let po{G) denote the probability that algo- 

rithm BasicMINCurT succeeds, i.e., returns u(G). Let po(n) denote the 

minimum of po(G) over all multigraphs on n vertices (we should really say 

infimum, since we deal with infinitely many graphs). 

We have po(2) = 1 as the base case (nothing is contracted for n = 2). For 

n > 2 we note that BasicMINCurT succeeds for G exactly if the following 

two events occur: 

E;: u(G) = u(G/e) for the first contracted edge e, and 

E,: BasicMINCuT succeeds for G/e. 

The probability of E; is at least 1 — 2 by the above lemma. Given that 

E; occurred, the probability of E, is always at least po(n — 1). Therefore,
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we get the recurrence® 

poln) > (1 =) po(n —1). 

Then we compute 

3
 So Z V 

B
I
N
 

w
l
i
o
 2 

*Ppo(2) = n(n—1 ih 

Probability amplification. | This bound for the success probability doesn’t 

look very optimistic (the algorithm may fail “almost always”). However, 

we can run the algorithm N times and return the smallest cut size found 

in all these runs. If the returned cut size is not correct, it means that 

the algorithm failed N times in a row. The failures in different runs are 

independent, and hence the probability of N failures in a row is bounded 

by N 

_ 2 < e 2N/ninet) 

n(n — 1) 

where we have used the well-known (and important) inequality 1+ x < e* 
2 

n(n—1)° 

If we set, say, N = 10n(n — 1), then the failure probability is bounded 

above by e-*° < 10-*. By increasing the number N of repetitions, the failure 

probability can be further decreased (observe that doubling N squares the 

bound for the failure probability). 

Altogether we have a randomized minimum cut algorithm with running 

time O(n‘) and with a very small probability of failure. This running time 

is comparable to some of the simpler flow-based algorithms. In the next 

section we will improve on it substantially. 

We conclude this section with a remark. We have formulated the al- 

gorithms in such a way that they compute only a number, the size of a 

minimum cut. What if we also want to find a minimum cut? The al- 

gorithms can easily be modified: We keep track of the identity of edges 

with x = — 

  

°A formal derivation involves conditional probabilities: 

2 
Pr[E; and E2] = PrlEiJ- PrlE2|€i] > (; -=) Ppo(n— 1}. 

Here we use that the probability of E2 is at least po(n — 1), no matter which edge e was 

contracted. Note that E; and Ez need not be independent in general!
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during contractions, and then from the cut in the final 2-vertex graph we 

can reconstruct the corresponding cut in the input graph. We have avoided 

this issue so far in order to keep the presentation simpler. 

1.2.2 Bootstrapping 

The first key observation towards an improved running time is that the 

probability of contracting an edge in the minimum cut increases as the 

graph shrinks. At first the probability is quite small, only 2 but near the 

end of execution, when the graph has only three vertices, it can be as high 

as 2 This suggests that we contract edges until the number of vertices 

decreases to some suitable threshold value t, and then we use some other, 

perhaps slower algorithm that guarantees a higher probability of success. 

What slower but more reliable algorithm do we have at disposal? The 

key inside is that we actually do not have to use any different algorithm, 

we just use the same algorithm, but with a smaller error probability (that 

we know we can get by repeated calls, cf. previous section). 

In the remainder of this section we first provide an abstract argument 

how such an approach can be used to get an algorithm with a runtime is 

arbitrarily close to O(n?). In the later part of this section we will then 

provide a more explicit statement of such an algorithm. 

A sequence of faster and faster algorithms. We claim that there exists a se- 

quence of algorithms (A;)j>9 such that for all i > 0 algorithm A; finds a 

minimum cut in time O(n") with probability at least 1/2, where f(0) = 4 

and f(i+ 1) = 4(1—1/f(i)) for i > 0. (Recall that the constant 1/2 is 

arbitrary: by probability amplification, cf. last section, we can increase it 

to any constant less than one without increasing the asymptotic runtime 

of the algorithm.) 

We will prove our claim by induction on i. For i = 0 there is nothing 

to show, as our basic version from the last section does the job. So assume 

we have already proved the existence of algorithm A; for some i > 0. We 

will show that then also algorithm A;,; exists. We construct this algorithm 

explicitly.
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Ai+1(G): RANDOMCOnTRACT(G, t): 

set parameters t and N suitably while |V(G}| > t do 

repeat N times: for random e € E(G) 

H — RANDOMConTRACT(G,t) Ge G/e 

call A;,(H) end while 

return smallest value return G         

As before we conclude from Lemma 1.2 that the probability that u(H) = 

u(G) is at least 

2 2 2 t(t—1) (15) -1- 5)... Ia) = 
n—1 n(n — 1)" 

If this is the case, then — by our induction assumption — A;(H) returns the 

value of u(H) with probability at least 1/2. One iteration of algorithm A;,, 

thus finds the size of a minimum cut in G with probability at least oy 

The probability that none of N iterations return u(G) is therefore bounded 

by N 

yp HERD" St 
2n(n—1)/) — 

  

  

  For N = ao this term is equal to e' < 1/2, as desired. Next we consider 

the runtime of the algorithm. In each iteration RANDOMCONTRACT(G,t) 

can be done in O(n’) time, while algorithm A,(H) requires time O(t*). 

The total runtime of algorithm A;,;(G) is thus bounded by 

2 

O(N: (2 +t") = O(5 z (n? +t), 

We now choose t = n*/*l4) (so that both terms in the bracket are equal) and 
obtain a runtime of O(n*“/*™), as claimed. We leave it as an exercise for 

the reader to show that f(i) —> 2 for i—> o. 

An Explicit Algorithm. The above arguments shows that there exists an algo- 

rithm with runtime very close to O(n”). But how does such an algorithm 

actually look like? The important observation is that within an algorithm 

A; we recursively solve many min cut problems for many small graphs. In 

fact, the smaller the number of vertices, the larger the number of recursive 

calls. 

Instead of trying to figure this out more precisely from the inductive 

argument given above, we proceed in this section the other way around.
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Namely, we start with the graph G we first duplicate this graph and then 

contract random edges in both copies independently until the number of 

vertices is reduced to an (for some appropriate constant 0 < « < 1 that we 

will determine later). Then we again duplicate both graphs and continue 

contracting edges in the now four graphs on an vertices. After the number 

of vertices is reduced by another factor of alpha, we again duplicate all 

graphs (so that we now have eight graphs on an vertices), and so forth. 

This leads to the following scheme of our improved minimum cut algorithm: 

  

MinCurt(G): 

ifn < 16 then 

compute u(G) by some deterministic method 

else 

te [an] +1 

H; RANDOMCONTRACT(G, t) 

H, ~-RANDOMConNTRACT(G, t) 

return min(MinCutT(H;),MinCutT(Hz)) 

end if     
  

We have introduced the “border case” n < 16 into the algorithm in order 

to simplify the analysis (and 16 is just a rather arbitrary constant that will 

turn out to be convenient in the analysis). In practice, we could actually 

go on with contractions all the way down to 2-vertex graphs, but we may 

have to adjust the algorithm for small graphs a little (as for very small n 

we may have [an] +1>n). 

We begin with estimating the running time, which is routine. Using 

our assumptions on the representation of the current graph, we know that 

we can construct the graphs H; in time O(n?). We thus get the recurrence 

t(n) < O(n’) + 2t(fon] +1). 

The alert reader may now see the similarity of this recurrence with the one 

that we studied in the beginning of this section. Similarly, as we argued 

there, we see that the solution of this recurrence depends on the value of 

ax. We leave it to the reader (cf. Exercise 1.2) to verify by induction that 

for « < 1/./2 we get t(n) = O(n? logn). 

Lemma 1.3. For « < 1/2 the running time t(n) of MinCuT on an 

n-vertex graph is bounded by O(n* logn).
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The more challenging part is the proof of the success probability. Let 

p(n) denote the minimum, over all n-vertex multigraphs G, of the proba- 

bilities p(G) that MinCuT succeeds, i.e., correctly returns u(G). 

Lemma 1.4. For « > 1/,/2 there is a real constant c, c > 1, such that 

p(n) = —_—— lin > 2. 
—~ 1+ log.n for all n = 

We will postpone the proof a little, and first we look what this gives us. 

First observe that the bounds on « are complementary in the two lem- 

mas. Our only choice in order to be able to apply both lemmas is « = 1/,/2. 

So lets fix this for now. 

The success probability p(n) can still be small, but we can achieve 

success probability close to 1 by repeating MINCuUT a suitable number of 

times. Since p(n) is much larger compared to po(n) ¥ 1/n?, we need much 

fewer repetitions. Namely, only O(log’n) repetitions suffice to bring the 

failure probability below n°, say. The achievements of this section can 

thus be summarized as follows: 

Theorem 1.5. Let a > 1 be a parameter and let « = 1/2. The ran- 

domized algorithm consisting of N = Calog*n repetitions of MINCuT, 

where C is a suitable constant, has running time O(n?log?n) and for 

every n-vertez input graph it computes the minimum cut size correctly 

with probability at least 1—n™“. 

Proof of Lemma 1.4. In order that MinCurtT fails for a given G, both of the 

events €; and € must occur, where €; means that 

u(H;) >u(G) or MunCur fails for H;. 

Since €; and €) are independent, we have p(G) = 1 — Pr[&,] Pr[&]. 

The probability of €; not occurring is equal to the probability that 

both w(H;) = u(G) occurs and MinCuT succeeds for H;. As both events 

are independent, we therefore get 

1— Pr[€] > Pr[w(H;) = u(G)]- p(t). 

As before, we use Lemma 1.2 to obtain 

  
* i-2_ t(t+1) (t—1)7 

3 3 |
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We now see that t was set up exactly so that the right-hand side is at 

least x’. Therefore Pr[€] < 1— p(t). Thus, we arrive at the following 

recurrence: 5 

p(n) > 1— (1 — «* p(fon] +1)) . 

Now it is time again to consider the choice of the parameter x. As it 

turns out, we need that 2«* > 1 in order to achieve a good lower bound 

for p(n). We leave it to the reader to check this. 

In the remainder of the proof we fix « = 1/,/2 to simplify calculations. 

We again leave it to the reader to check that the proof can in fact easily be 

generalized to larger values of x. 

According to the algorithm we can suppose p(n) = 1 for n < 16. We 

prove by induction on k that p(n) > 1/k for all n < 1.2%. (Then, for 

1.21 <n < 1.2, we have p(n) > 1/k > Thee and the lemma follows, 

since every n has a k to make the conclusion.) The numbers 16 and 1.2 are 

chosen in such a way that for n > 16 we have [n//2] +1 <n/V2+2< 

n/1.2. Therefore, assuming that the inductive assumption holds for k — 1 

and that n < 1.2", we have p([n/V2] +1) > <4. Then 

  

2 

p(n) > 1 (1 5ptrrva} +1) 
1 2 

> 1 _ ( —_ mT) by induction 

—  k-= 2] 
~ ko? 

since k(k—?) > (k—1)? for k > 2. This concludes the proof of Lemma 1.4. 

The algorithm of this section is from Karger, Stein, A new approach 

to the minimum cut problem, Journal of the ACM 43, 1996, 601-640. 

We conclude this section with the remark that the best known algorithm 

for finding a minimum cut in a graph has runtime O(mlog’ n), cf. Karger, 

Minimum cuts in near-linear time, Journal of the ACM 47, 2000, 46-76. 

Exercise 1.2. Prove Lemma 1.3 formally. Can we improve the bound on 

t(n) if we assume that a < 1/./2? 

Exercise 1.3. Prove: a (multi)graph G on n vertices cannot have more 

than (3) minimum cuts.
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Exercise 1.4. You recall that the algorithm BasicMINCuT computes a 

guess for the size of a minimum cut of a (multi)graph G by repeatedly 

contracting a uniformly random edge until there are only two vertices 

left and then returning the number of edges running between these two 

vertices. 

As usual, denote the size of aminimum cut of G by u(G). We have 

derived in the lecture that the number Lg which BASICMINCUT outputs 

(on input G) is at least u(G), and Pr[Lg = u(G)} = O(n). 

Consider the following slightly modified algorithm BasicMINCutT’: 

just like BAsICMINCuT, 12t repeatedly contracts a uniformly random 

edge until there are only two vertices left. But instead of just returning 

the number of edges between those two vertices in the very end, it 

returns the smallest degree of any verter observed during the execution 

of the algorithm. That 1s tf Go, G1, G2,..., Gn_2 18 the sequence of graphs 

encountered, with Gp = G and |V(Gy_2)| = 2, at returns 

Le:= min min deg(v). 
GC O<icn—2 veViG;) gv) 

Prove that 

(a) BasiIcMiInCurT’ can be implemented so as to run in time O(n’), 

(b) Le > u(G) always holds, 

(c) for any fixed x >0, the success probability 

Pal) = mn  —— Prilg < (1+ @)u(G)] 
G @ graph on n vertices 

satisfies the recurrence 

= ) palm —1) Po(n) = (1 _ (+oa)n 

Using (c), one can prove that for any fired x > 0, po(n) € O(n), 

but this 1s just calculation and we do not ask you to do this here.


