Chapter 5

Randomized Algebraic Algorithms

Chapter by J. Matou§ek (with small additions by E. Welzl).

Keywords: matrix multiplication, Monte Carlo algorithm, probabilistic checking, zero-
testing of polynomial, Schwartz-Zippel Theorem, perfect matching, permanent, determi-
nant, finite field, Tutte matrix, cycles of a permutation.

In this chapter we consider algorithms based on the idea of probabilistic
checking, which proved extremely fruitful in computer science. It led to
the celebrated PCP theorem, which essentially says that correctness of
every solution of a problem in NP can be checked extremely fast (well, if
the solution is written in the appropriate way).

We will first illustrate probabilistic checking on a very simple example,
and then, after some preparations, we will consider randomized algorithms
for testing the existence of perfect matchings in a graph.

5.1 Checking Matrix Multiplication

Multiplying two n x n matrices is a very important operation. Moreover,
many other matrix operations, such as inversion or determinant, can be
computed in asymptotically the same time as matrix multiplication.

A straightforward algorithm multiplying two n x n matrices requires
about n® arithmetic operations, but ingenious algorithms have been dis-
covered that can do such a multiplication in an asymptotically much better
time. The current record is an O(n?3728%) algorithm, with an O(n?3"1%8)
algorithm still in peer review as of 2022. The constants of proportional-

123

124 CHAPTER 5. RANDOMIZED ALGEBRAIC ALGORITHMS

ity in these algorithms are so astronomically large that the algorithms are
only theoretically interesting, since matrices for which they would prevail
over the straightforward algorithm do not fit into any existing or future
computer.

But progress cannot be stopped and soon a software company may
start selling a program called MATRIX WIZARD that, supposedly, mul-
tiplies matrices real fast. Since wrong results could be disastrous for you,
you would like to have a simple checking program appended to MATRIX
WIZARD that would always check whether the resulting matrix C is really
the product of the input matrices A and B. Of course, a checking pro-
gram that would actually multiply A and B and compare the result with C
makes little sense, since you do not know how to multiply matrices as fast
as MATRIX WIZARD. But it turns out that if we allow for some slight
probability of error in the checking, there is a very simple and efficient
checker for matrix multiplication.

Let us first consider the ad-hoc method, just to appreciate even more
what comes next. The checking algorithm receives n x n matrices A, B, C
as the input. In order to check C = AB we can simply choose { entries
cij of C (u.a.r. from all {-element subsets of all n? entries) and verify that

indeed
n
Cij = E Qi byj
e

holds. That takes time ©(n) for each entry, i.e. @({n) time altogether. If
C is wrong in just one entry, then the probability of our £ random choices
capturing this entry is’

n?—1

() e

2 - .2
(v)
That is, even if we choose { = n, thereby spending time ©(n?), we are
still left with a small success probability of % After all, if a single entry is
wrong, it’s like looking for a needle in a haystack, so what can we expect.
Much more, as we will see.

For a next attempt, we assume that the considered matrices consist of

!An even more direct way of seeing this probability an is as follows. For reasons of

symmetry, we may as well fix the { entries to check and take the faulty entry u.a.r. from
the n? entries—so the probability for this entry to fall among the { entries checked is
clearly %

5.1. CHECKING MATRIX MULTIPLICATION 125

rational numbers, although everything works without change for matrices
over any field. Using a random number generator, it picks a random n-
component vector x of zeros and ones. More precisely, each vector in {0, T}"
appears with the same probability, equal to 27". The algorithm computes
the products Cx (using O(n?) operations) and ABx (again with O(n?)
operations; the right parenthesizing is, of course, A(Bx)). If the results
agree, the algorithm answers YES, otherwise it answers NO.

If C = AB, the algorithm always answers YES, which is correct. But if
C # AB, it can answer both YES and NO. We claim that a wrong answer
YES has probability at most %, and thus the algorithm detects a wrong
matrix multiplication with probability at least ;.

Let us set D := C — AB. It suffices to show that if D is any nonzero
n x n matrix and x € {0, 1}" is random, then the vector y := Dx is zero
with probability at most 1.

Suppose that di; # 0. We want to derive that then the probability of
yi = 0 is at most J. We have

yi = dixg +dioxo + -+ dinxn = dinj + S,

where

S:= Z dika .

k=1,2,...,n
k#j

Imagine that we choose the values of the entries of x according to successive
coin tosses and that the toss deciding the value of x; is made as the last one
(since the tosses are independent it doesn’t matter). Before this last toss,
the quantity S is already fixed, because it doesn’t depend on x;. After the
last toss, we either leave S unchanged (if x; = 0) or add the nonzero number
dy to it (if x; = 1). In at least one of these two cases, we must obtain a
nonzero number, and so y; = O has probability at most % as claimed.

The described checking algorithm, although a definite progress com-
pared to the previous, is still not very reliable: It may fail to detect an
error with probability as high as % But if we repeat it, say, fifty times
for a single input A, B, C, it fails to detect an error with probability at
most 27° < 107°, and this probability is totally negligible for practical

purposes.

Exercise 5.1. Checking over GF(2)
Suppose we are running the checking algorithm for matrices over GF(2),

126 CHAPTER 5. RANDOMIZED ALGEBRAIC ALGORITHMS

1.e. numbers are {0, 1} with addition and multiplication mod 2. Show
that 1n one iteration the success probability of detecting an error in the
supposed product matrix C is exactly %, wn case matriz C 18 wrong in
exactly one row.

Exercise 5.2. For the Letter of Complaint
If the matriz multiplication checking algorithm detects the existence of
an error, how much extra time does it take to explicitely find an entry
in the supposed product that is wrong (after all, we have to point at
the problem when complaining to the MATRIX WIZARD company).

Exercise 5.3. More Vectors—Smaller Error
Consider a modified checker for matriz multiplication (over Q): In-
stead of choosing a random vector with components O and 1, choose a
random vector with components drawn from {0,1,..., N —1} uniformly
and independently at random. Show that the probability of failure
(declaring an incorrect multiplication correct) is at most %

REMARK: Of course, we still pay a prize. While multiplication with O or 1 is for
free, that does take some time as the multipliers get larger.

5.2 Is a Polynomial Identically Zero?

How can one tell whether a given polynomial is identically zero? This is
easy if the polynomial is given to us by the coefficients.? But instead of the
coefficients we may be given a black box that evaluates the polynomial at
any given point. This is not a completely unusual situation, as we will see
later.

For an arbitrary function given by a black box we can never be sure that
it is zero everywhere unless we evaluate it at all points, but polynomials
have a remarkable “rigidity” property: A low-degree polynomial either is
zero everywhere, or it is nonzero almost everywhere. Slightly more gener-
ally but equivalently, two low-degree polynomials either coincide or they
differ almost everywhere.

Let us first talk about polynomials in a single variable (so-called unz-
variate polynomaials), although this is not quite the problem we mean. A

2Well, complications may arise for finite fields, since for example, the polynomial x*+x
is identically O over the two-element field GF(2). But at least for infinite fields things are
clear, since a polynomial is identically zero if and only if all coefficients are 0.

5.2. IS A POLYNOMIAL IDENTICALLY ZERO? 127

simple but fundamental result from algebra tells us that if a nonzero uni-
variate polynomial with coefficients from a field has degree at most d, then
it has at most d zeros. Therefore, it suffices to have such a polynomial
evaluated at any d + 1 points: If it is 0 at all of them, then it must be
identically O, and otherwise, of course, it is nonzero.

The situation for polynomials in more than one variable is not so simple,
since the zero set of a multivariate polynomial can be rather complicated
(for example, the zero set of the polynomial x? +x3—1 is the unit circle, the
zero set of x;x; is the union of two lines, etc.). If we want to be absolutely
sure that a polynomial in many variables is zero, we have to evaluate it in
quite many points. But using randomization, we can be almost sure after
evaluating it only a few times.

Let us now consider a polynomial in n variables xi, X2, ...,Xn, such as
3x§x3x5 — x3x; + 2x2 — 17 (this one is in 5 variables, but if desired, we
could also regard it as a polynomial in 27 variables, where x¢ through
X7 don’t show up). A general polynomial in n variables is a finite sum

of terms of the form ai, i, i, X)'x7 -+ x» (called monomials), where the
exponents i;,...,1, are nonnegative integers and a;, ;, i, is a coeflicient.

The degree of this term is i; +1, +- - - +1,,, and the degree of a polynomzial
is the maximum of the degrees of its terms (with nonzero coefficients). For
example, the polynomial above has degree 9 because of the first term.

The reader will probably be most familiar with polynomials with ra-
tional or real coefficients. Here we will allow for polynomials with coeffi-
cients from an arbitrary field F. This is actually important in algorithmic
applications; it turns out that by working with suitable finite fields one
can sometimes do significantly better than by working with rational co-
efficients. Let F[xi,x2,...,%x,] denote the ring of all polynomials in the
variables xi, Xz, ...,X, With coefficients in F.

Theorem 5.1 (Schwartz—Zippel theorem).

Let p(xq1y...,%xn) € Flxq,...,x,] be a (nonzero) polynomial of degree
d >0, and let S C F be a finite set. Then the number of n-tuples
(T1,72y+ .y Tn) € S™ with p(r1,72,...,Tn) = 0 is at most d|S™'. In other
words, 1f r1,...,T, € S are chosen independently and uniformly at ran-
dom, then the probability of p(r1,72,...,1m) =0 25 at most \%l'

Proof. We proceed by induction on n. The univariate case is clear, since

3This Schwartz is really with “¢”, unlike the one from the Cauchy-Schwarz inequality.

128 CHAPTER 5. RANDOMIZED ALGEBRAIC ALGORITHMS

there are at most d roots of p(x1).

Let n > 1. Let us suppose that x; occurs in at least one term of
p(x1y...,X,) with nonzero coefficient (if not, we rename the variables). Let
us write p(x1,...,X,) as a polynomial in x; with coefficients in F[x,, ..., x.]:

k
P(Xth) .. ->Xn) = Zxﬁ pi(XZ) .. ->Xn)>
i=0

where k is the maximum exponent of x; in p(x,...,X,)-

We classify the n-tuples (v, 12,...,m,) with p(ry,...,1,) = 0 into two
groups. The first group are those with py(rs,...,m,) = 0. Since the polyno-
mial py(x2,...,X,) is not identically zero and has degree at most d —k, the
number of choices for (r,,...,T,) is at most (d — k)|S|*~? by the induction
hypothesis, and so the first group has at most (d — k)|S|™" n-tuples.

The second group are the remaining n-tuples, with p(ry,12,...,m7) =0
but py(r2,...,m) # 0. Here we count as follows: r, through r, can be cho-
sen in at most |S|""! ways, and if 15,. .., T, are fixed with py(r2,...,m) # 0,
then my must be a root of the univariate polynomial q(x;) := p(x1, T2y ..., Tn)-
This is a nonzero polynomial of degree k, and hence it has at most k roots.
The second group therefore has at most k|S|*~' n-tuples, which gives d|S|™"
altogether, finishing the induction step.

Exercise 5.4. Proving Schwartz-Zippel Tight
Gwven a finite set S of rational numbers and positive integers d and
n, d < [S], find a polynomial p(x1,%2,...,xn) of degree d for which
the Schwartz—Zippel theorem 1s tight. That 1s, the number of n-tuples
(T1y...,Tn) € S™ with p(ry,...,1n) =0 15 d|S™ .

Exercise 5.5. Extracting Polynomials

Suppose that a polynomial p(xq,...,xn,Yy) tn n+ 1 variables s given
by a black boz that, given concrete values for x;,...,x, andy, returns
the value of the polynomial. Let m be the mazrimum degree of y in
p and write p(x1y..., Xn,Y) = > oY pilx1y ..., Xn). Given an integer
k and numbers ri,...,1,, how can we compute py(ry,...,Tn) (using
only the black boz)? Assume we know the degrees of the polynomials
Pi(x1y...,%n) or at least some upper bounds. How can we test whether
Pr(x1y...yXn) 28 a nmonzero polynomial? For simplicity, assume that
everything happens over the rationals.

5.3. TESTING FOR PERFECT BIPARTITE MATCHINGS 129

5.3 Testing for Perfect Bipartite Matchings

We want to know whether a graph G has a perfect matching, i.e. a match-
ing covering all vertices. A maximum matching can be computed in time
O(m4/n), but the known algorithms are rather complicated. Here we
explain very simple randomized algorithms for testing the existence of a
perfect matching. These algorithms use the Schwartz—Zippel theorem for
testing whether a suitable polynomial associated to the considered graph
is zero, and the polynomial is given as the determinant of a certain matrix.

We begin with the bipartite case. Let us consider a bipartite graph G
with color classes {uj,uy,...,u,} and {vy,vs,...,v,}. Let S, denote the
set of all permutations of {1,2,...,n}. We note that a perfect matching
in G, if one exists, corresponds to a permutation 7t € S,: It has the form
{w, vy b {uz, va) by« + o {tny V) }). We introduce an n x n matrix B by
letting

_— { 1 if {w;, v;} € E(G)
Y 0 otherwise.

A given permutation 7t determines a perfect matching in G if and only if
the product by x(1)b2x2) - - - bnxn) €quals 1, and so the sum

per(B) := Z b1 b2(2) * By

mESH
called the permanent of B, counts all perfect matchings of G. Our problem
is thus to test whether per(B) = 0.

The definition of per(B) resembles the definition of det(B) but the de-
terminant has the sign of 7t in front of each product. This innocent-looking
difference is crucial: While the determinant can be computed in polynomial
time, the computation of the permanent is NP-hard (even #P-complete,
for those more advanced in complexity theory). We can have det(B) = 0
even if per(B) # 0, since nonzero terms may cancel out in the determinant.

To avoid such cancellations, we introduce one variable (indeterminate)
xi; for each edge {u;,v;} € E(G), and we define another matrix A:

L = Xij if {ui,vj} c E(G)
V") 0 otherwise.

So A is a function of the x;;, and det(A) is a polynomial in these [E(G)
variables. Since the determinant is a sum of products of n variables each,
the degree of det(A) is n (unless the polynomial is constant 0).

130 CHAPTER 5. RANDOMIZED ALGEBRAIC ALGORITHMS

V1 V2 V3
x1 0 X3
A = X21 O X23
i W U3 0 X32 0

Figure 5.1: A graph and its matrix A with det(A) = —xy1x23X32+X13X21X3—
the two monomials of the determinant correspond to the two perfect match-
ings in the graph.

Lemma 5.2. The graph G has a perfect matching if and only if the poly-
nomaial det(A) s not identically zero.

Proof. Each monomial of det(A) with nonzero coefficient determines a
perfect matching in G. Conversely, if G has a perfect matching M, we
substitute 1 for x;; if the edge {u;,v;} is in M and 0 otherwise, and we get
a matrix with determinant +1.

The determinant of A can thus be used for testing whether G has a
perfect matching. We cannot afford to compute it (as a polynomial), since
it can have exponentially many terms, but we can use the Schwartz—Zippel
theorem.

Since deg(det(A)) < n, we need a set S of size larger than n, say
at least 2n, for choosing the random values of the x;;. (Recall here that
Schwartz—Zippel tells us that the error probability is at most %‘T(An; SO
this better be small.) The first attempt might be to consider det(A) as
a polynomial with rational coefficients and to use S ={1,2,...,2n}. But
to decide whether the determinant is 0 for a given substitution, we have
to compute exactly. We might encounter numbers with about n bits in
the computation, and so the arithmetic operations would become quite
expensive.

It is better to work with a finite field. The simplest way is to choose a
prime number p, 2n < p < 4n, and to regard det(A) as a polynomial with
coefficients in GF(p), the field of integers modulo p. Then

e It is still true that det(A) is nonzero if and only if G has a perfect
matching; the proof of Lemma 5.2 works over any field.

e We can choose the random values for the x;; among at least 2n ele-
ments, and so the probability of detecting that det(A) is nonzero is

5.4. PERFECT MATCHINGS IN GENERAL GRAPHS 131

1
at least 3

e The determinant of a matrix over GF(p) can be computed using
O(n®) arithmetic operations by Gaussian elimination, or even us-
ing O(M(n)) = O(n?¥®) arithmetic operations, where M(n) is the
number of operations required to multiply two n x n matrices. The
arithmetic operations in GF(p) are fast if we prepare a table of inverse
elements in advance.

e Finally, a prime p between 2n and 4n always exists by a theorem from
number theory called Bertrand’s postulate (even stronger results are
known). It can be found in O(n*?) time by testing all numbers one
by one, by the simplest primality test anyone can come up with (or
also much faster by more advanced methods, but we don’t need that
here).

Summarizing, we have an algorithm that can test whether a given bi-
partite graph has a perfect matching, has running time O(M(n)), and has
failure probability at most ‘z As usual, the failure probability can be made
smaller than any given & > 0 by O(log %) repetitions.

Exercise 5.6. Perfect Matchings Parity
Describe an efficient deterministic algorithm for deciding whether a
bipartite graph has an odd number of perfect matchings.

HiNT: Consider B as a matrix over GF(2).

5.4 Perfect Matchings in General Graphs

Permutations, Cycles, Signs. We briefly recapitulate some basic notions about
permutations in order to have them handy when we will need them later. S, is the
set of all bijective mappings {1..n} — {1..n}. This set equipped with composition
forms a group generated by transpositions (i,j), defined as

i—j,j—1, and, for k € {i,j}, k— k.

Although a permutation can be written in several ways as composition of trans-
positions, the parity of the number of transpositions in a representation of a per-
mutation 7t is an invariant of 7t and it defines the sign of 7: sign(m) = +1 if the
number of transpositions is even, and sign(7t) = —1, otherwise.

132 CHAPTER 5. RANDOMIZED ALGEBRAIC ALGORITHMS

Given a permutation 7w € S,, the set {(i,7t(i))i € {1..n}} constitutes a set of
directed edges on the vertex set {1..n}. Clearly, every vertex has out- and in-degree
1, and therefore it partitions {1..n} into cycles (some may be cycles of length 1:
loops; e.g. for the identity map we get n loops). It turns out that the sign of a

permutation is

(—1)number of even cycles
)

i.e. the sign is positive iff the number of even cycles is even. (A cycle i} — i —
... — i+ 17 can be written as composition (i, ix)o(i1,ik_1)---o(i1,12); therefore,
if k is even, this gives an odd number of transpositons.)

The algorithm from the previous section can be extended to arbitrary,
not necessarily bipartite, graphs, but we need to work with another matrix.
For a graph G with a vertex set V = {vy,v5,...,v,} we introduce a variable
xy for every 1T <1 <j < n with {w,v;} € E(G), and we define the Tutte
matriz A of G by

+xy if i <j and {vi,v;} € E(G),

aij:= ¢ —x; if i>j and {v;,vj} € E(G),
0 otherwise.
1 2 0 0 X13 0
0 0 X23 X4
. 4 —x13 —x3 0 xxu
0 —xu —xu O

Figure 5.2: A graph and its Tutte matrix.

Theorem 5.3 (Tutte). The polynomzial det(A) s nonzero if and only if G
has a perfect matching.

Proof. One direction is equally easy as in the bipartite case (Lemma 5.2):
If G has a perfect matching M, then we substitute x;; = 1 if {v;, v;} is in the
matching and xj = O otherwise. Since every vertex v; is connected in M
to exactly one other vertex, the resulting matrix has exactly one nonzero
entry, +1 or —1, in every row and in every column, and so the determinant
is +1.

The opposite implication is considerably harder than for the bipartite
case, because it is no longer true that nonzero terms in the expansion of the

5.4. PERFECT MATCHINGS IN GENERAL GRAPHS 133

det(A) are contributed only by perfect matchings. As a simple example,
let us consider the triangle K;, whose Tutte matrix is

0 X12 X13
A = —X12 O X23
—x13 —x23 O

Expanding det(A) according to the definition of determinant gives det(A) =
+x12%23(—x13) + X13(—x12)(—x23). This yields 0 as it should, since the two
terms “miraculously” cancel out, but we must show that all terms that do
not come from a perfect matching always cancel out.

To this end, we need to talk about cycles of a permutation 7t € S,,;: We
define the graph of 7t as the directed graph with vertex set {1,2,...,n}and
with edge set {(i,7t(1)):1=1,2,...,n}; for example:

6

Every vertex has indegree 1 and outdegree 1, and so this graph consists
of disjoint cycles, possibly also of lengths 1 (loops) and 2 (two opposite
edges).

Let us see what terms contribute to the determinant of the Tutte matrix
A. By definition

det(A) = Z sign(7t) - a1 (1) A2m(2) - * - An(n) -
T[ESn
Let us write a(m) = aj1)Q2n(2) * * * Anmn), and let us call @ tmportant if
a(7m) # 0. Let us define, for a permutation 7 € S,

E.:= {{vi,vnm} 1= 1,2,...,n}.

So E is an undirected version of the graph of 7t introduced above, and 7t is
important if and only if E; C E(G). In particular, we note that the graph
of an important 7t has no loops (cycles of length 1).

We want to show that +f det(A) # 0, then there is at least one impor-
tant 7 with all cycles of even length. This is sufficient since if all cycles

134 CHAPTER 5. RANDOMIZED ALGEBRAIC ALGORITHMS

have even length, then E, contains a perfect matching, and thus G has a
perfect matching as well.

Let OI denote the set of all important permutations (for G) that have at
least one odd cycle. We define a mapping r : OI — OI as follows: Among
all odd cycles of a permutation 7t € OI, we consider the one containing the
smallest number, and we form the permutation r(7t) by reversing arrows on
that cycle. For example, for the permutation 7t in the above picture, the
corresponding r(7) is given by 1 +—7,2—6,3—4,4+—8,5— 9,6 2,
7+—5,8—3,2+— 10,and 10 — 1. Clearly, r is a bijection, and it is easy to
check that a(r(m)) = —a(mn) (here the signs in the Tutte matrix come into
play). With a little more work one can show that sign(r(7t)) = sign(7t) for
allte O So) . sign(m)-a(m) = 0, and hence if det(A) # 0, there has
to be an important permutation with all cycles of even length as claimed.

Using Tutte’s theorem and the tools from the previous sections, we
obtain a randomized algorithm for testing whether a given graph has a
perfect matching, with O(M(n)) running time and probability of failure at
most 1.

2

Exercise 5.7. Signs of Permutations and Odd Cycles
Letn € N. The sign sign(m) of a permutation 7 of {1..n} can be defined,

e.g., by
: ni(i) — 7(j)
sign(7) = | | _—,

T
1<i<j<n)

Recall that for two permutations m and o of {1..n} we have
sign(7to o) = sign(7) - sign(o),

where o 1s the concatenation of ™ and o, i.e mwo o(x) = m(o(x)).
Furthermore recall that for a permutation m with an odd cycle the
permutation r(m) has exactly the smallest cycle reversed.

(a) Show that for a permutation m which consists of only one odd
cycle and no even cycle the signs of m and v(7t) are equal.

(b) Show that for a permutation m with an odd cycle the signs of m
and v(7t) agree.

5.5. COMPARISON WITH OTHER MATCHING ALGORITHMS 135

Exercise 5.8. The Permanent and the Determinant
Let A be an n x n matriz with 0/1-entries. For 1 <1i,j < n let €;; be
independent random variables, €5 €yqr. {—1,+1}. Let B be the random
matrz with by; = €i5-aij. In other words, to get B from A we randomly
assign signs to the entries of A.

(a) Show that E[det B] = 0.
(b) Show that E[(detB)?] = per(A).

REMARK: (b) may be challenging.

5.5 Comparison with Other Matching Algorithms

As we have remarked, the best known deterministic algorithm computes
a maximum matching in an arbitrary graph in O(m./n) time, where n is
the number of vertices and m is the number of edges.

Running Time. With the theoretically fastest known matrix multiplica-
tion, the described randomized algorithm can test the existence of a per-
fect matching in time roughly O(n?37%). This is the asymptotically fastest
known method, even for the bipartite case. With Gaussian elimination the
algorithm works reasonably well in practice and it is very easy to code. On
the other hand, the deterministic algorithm is theoretically faster for not
too dense graphs.

Testing versus Finding. If a perfect matching exists, we usually also want to
find one. The deterministic algorithm does it, while for the randomized one
computing a perfect matching requires additional work. There is a simple
way of using any testing algorithm for computing a perfect matching (the
reader is invited to try this as Exercise 5.9), but efficiency is lost since the
testing algorithm needs to be called many times.

A more clever and more complicated extension of the testing algorithm,
discovered in 2004, can find a perfect matching in a general graph in
O(M(n)) time if one exists, where M(n) is the time needed for multi-
plying two nxn matrices (with polynomially large integer entries). For
dense graphs, this is again the theoretically fastest known algorithm.

136 CHAPTER 5. RANDOMIZED ALGEBRAIC ALGORITHMS

Maximum Matching. The deterministic algorithm can also find a maximum
matching (which is not necessarily perfect). The randomized algorithm can
also be extended to do this. For example, to find a matching of size k in a
graph G, we can form a new graph G* by adding n — 2k new vertices and
connecting them to all old vertices. It is easy to see that G* has a perfect
matching if and only if G has a matching with k edges, and any perfect
matching in G* yields a matching with k edges in G. To find a maximum
matching, we can do binary search over k.

The sophisticated O(M (n)) perfect matching algorithm mentioned above
also works for maximum matchings.

Parallel Algorithms. The randomized approach via determinants can be
efficiently parallelized; namely, it yields a parallel algorithm for testing the
existence of a perfect matching that runs on polynomially many processors
in O((logn)c®*) time. (Problems admitting such a parallel algorithm are
said to belong to the class NC or, if the algorithm is randomized as in our
case, RNC.) This requires a fast parallel computation of the determinant,
which is nontrivial but possible. No fast parallel versions are known for
deterministic maximum matching algorithms.

Colored Matching. Finally, the randomized approach discussed above can
also solve other matching-type problems for which no polynomial-time de-
terministic algorithms are known. For example, suppose that each edge of
a given bipartite graph is colored red or blue. Does there exist a perfect
matching using exactly k red edges? The reader may try to extend the
algorithm from Section 5.3 to this problem (see Exercise 5.10).

Exercise 5.9. Existence vs. Explicit Construction
Suppose that we have an algorithm for testing the existence of a perfect
matching in a giwen graph, with running time at most T(n) for any
n-vertex graph.

(a) Ezplain how repeated calls to the algorithm can be used to find a
perfect matching if one exists. Estimate the running time of the
resulting algorithm.

(b) How can the algorithm be used for finding a mazimum matching
n a gwen graph?

5.6. COUNTING PERFECT MATCHINGS IN PLANAR GRAPHS 137

Exercise 5.10. Just Enough Red
Consider a bipartite graph in which some edges are colored red and
some blue. Ezxtend the randomaized algorithm discussed in class to
handle the following problem: Given such a colored bipartite graph
and an wnteger k, 1s there a perfect matching that contains ezxactly k
red edges?

HinT: Use Exercise 5.5.

REMARK: No polynomial-time deterministic algorithm for this problem seems to
be known.

5.6 Counting Perfect Matchings in Planar Graphs*

Sometimes it is even possible to compute the number, pm(G), of perfect
matchings in a graph G by looking at the determinant of the “right” matrix
derived from the graph.

Let G = (Vg,Eg), Vg = {1..n}, be a graph with n even and let G =
(Vg, Eg) be an orientation of G, i.e. every edge {i,j} in G is represented by
exactly one of (i,j) or (j,i) in G. For such an orientation we define the
following matrix

As(G) = (ay)fy €{0,+1,—1}"™ , where
+1 if (i,]) € Eg,
ay = —1 if (j,1) € Eg, and

0 otherwise.

This is what is called a skew-symmetric matrix (meaning that a; = —aj;
for all (1,j), in particular a;; = 0). Note that the matrix is nothing else but
the previously considered Tutte matrix A of G where we have plugged in
+1 or —1 for the variables x;;, i < j, {i,j} € Eg. So some of what we have
learned for the Tutte matrix will be useful here.

A Lower Bound for the Number of Perfect Matchings.

Lemma 5.4.
det(A(G)) < pm(G)?

“Addendum by E. Welzl (following L. Lovész, M.D. Plummer, Matching Theory, in:
Annals of Discrete Mathematics Vol. 29, North-Holland,1986).

138 CHAPTER 5. RANDOMIZED ALGEBRAIC ALGORITHMS

Proof. For perfect matchings M; and M, in G, consider their union
U := M; U M;. This is an edge set U C E; consisting of even cycles and
independent edges. (If M; = M,;, then U is a perfect matching itself.)
Given such a U = M; U M,, for how many pairs (M',M") of perfect
matchings in G can we write U = M’ U M"? This is exactly 2%, where k is
the number of cycles in U (not counting the independent edges), because
the edges of an even cycle partition into two perfect matchings of its vertex
set and we can choose for M’ one of the two for each even cycle in U. So
if U denotes the set of all unions of two perfect matchings in G and ||U]|,
for U € U, is the number of even cycles in U, then

pm(G)* =) 2,
Ueu
Note that for a permutation 7t € S,, with all of its cycles even, the previously
defined set E, = {{i, (1)} | 1 € {1..n}} is of the form that it decomposes into
even cycles and independent edges (for the cycles of length 2 in 7). It easily
follows that
E.CE; & E€U.

Given U € U, for how many permutations 7t do we have E, = U7 Inter-
estingly, this is again 2"l since we have for each cycle of length at least 4
exactly two possibilities to orient the cycle — for the independent edges in
U there is no choice for the cycle of length two associated with it. So we
can extend the equivalence above to

pm(G)* =) 2 = IE| .
Ueu
where IE := {m € S, | E; C Eg,all cycles in 7t even}, the set of important
permutations with all cycles even. Now we inspect the determinant. We
have argued before that a(71) := Qix(1)Q2r(2) - - - Anmm) # 0 (1-€. +1 or —1) iff
Er € G and that the terms of such permutations with odd cycles cancel
each other out (This was true in the Tutte matrix with variables, so it is
also true, of course, if we plug in some values for the variables). Therefore

det(A,(G)) = ZSign(ﬂ)ammazn(z)"'(lmr(n)

mESH
= Z sign(7t) a(m)
nelB ?g

A
=
I
o]
B
)
N

5.6. COUNTING PERFECT MATCHINGS IN PLANAR GRAPHS 139

Whether or not a term sign(m)a(m), m € IE, is +1 or —1 depends on
how we orient the graph G. Ideally, we wish to choose an orientation in
such a way that this is always® +1. Then we can compute the number of
perfect matchings in G as pm(G) = \/det(As(é)). We will see that this is
indeed possible for planar graphs.

To this end, recall that sign(m) = (—1)»umber of even cycles N7 For a

cycle c: iy — i, — - - i — 1y in a permutation 7t write
alel := aiyi, Qi - Qiyyiy iy -
Then, for 7t € IE,

sign(m)a(m) = H (—alc])

ccyclein 7

since in 7t € IE all cycles are even, so the minus in “(—alc])” takes nicely
care of sign(7t)’s contribution. Note right away that foracyclec:i—j+—1
of length 2, alc] = ajja;; = —1 (skew-symmetry!) and therefore the term
(—alc]) is +1.

It is clear now what we want. Choose the orientation in such a way that
for any cycle ¢ in a permutation in IE, we have a[c] = —1. This will be
the case, when we run along the cycle c in the graph G and the number of
times we move against an edge of G is odd. The goal is set, we understand
what needs to be done, so let us proceed.

Nice Cycles in G and Oddly Oriented Cycles in G. We have to define some
terminology for our next step. Along what we have just argued, both
notions should appear naturally.

Let C be an undirected cycle in G of even length. We call C oddly
oriented in G if going through C in some direction, we encounter an odd
number of edges in G oriented in our traversal direction — and, therefore,
also an odd number of edges oriented in the opposite direction (hence, since
C is even, the definition does not depend on the direction in which we chose
to traverse C).

5You correctly might want to argue that “always —1” would be just as good. However,
the determinant of a skew-symmetric matrix is never negative, so “always —1” will not be
possible.

140 CHAPTER 5. RANDOMIZED ALGEBRAIC ALGORITHMS

For C a cycle in G with vertex set V¢, we call C nice, if G [V \ V| (the
subgraph of G induced by Vi \ V¢) has a perfect matching. Observe that if
G has any perfect matching, then n has to be even (what we assumed) and
every nice cycle has to be even. Note also, that if a permutation 7 € IE
has a cycle c of length at least 4, then its undirected counterpart C is a
nice cycle in G. And alc] = —1 iff C is oddly oriented in G.

So “nice” and “oddly oriented” let us nicely express a sufficient con-
dition for what we want (it is actually also necessary, but we don’t allow
such distractions at this point).

Lemma 5.5. If every nice cycle in G 1s oddly oriented in é, then
det(A(G)) = pm(G)* .

Orientations G with det(As(é)) = pm(G)? are called Pfaffian®’. There
are examples of graphs which do not allow a Pfaffian orientation, so we will
restrict to a special class of graphs.

Pfaffian Orientations of Planar Graphs (Kasteleyn, 1967)% Planar graphs are
graphs that can be drawn in the plane so that no pair of edges crosses. A
concrete crossing-free embedding is called a plane graph. If v is the number
of vertices of a connected plane graph, e the number of edges, and f the
number of faces, then Euler’s relation says that v—e+f = 2 (don’t forget
to count the unbounded face).

A maximal planar graph (i.e. no further edge can be added without vio-
lating planarity) is called a triangulation. In any crossing-free embedding
of a triangulation, all faces (including the unbounded one) are triangles, at
least as long as the number of vertices is at least 3.

Lemma 5.6. Let T be a plane oriented triangulation with at least 3 ver-
tices where every finite face (a triangle) has an odd number of edges
oriented clockwise.

e Let C be an undirected cycle in T with k of its edges oriented
clockunse in T and with v vertices of T inside C (i.e. in the region
surrounded by C, not including C). Then k=v+1 (mod 2).

6This term comes out of the blue here, I know ...google, or even better, consult a
Linear Algebra book!

"Johann Friedrich Pfaff, 1765-1825, mathematician born in Stuttgart, Carl Friedrich
Gauss’s supervisor.

8Piet Kasteleyn, 1924-1996, theoretical physicist born in Leiden, Netherlands.

5.6. COUNTING PERFECT MATCHINGS IN PLANAR GRAPHS 141

eTisa Pfaffian orientation.

Proof. Let C be a cycle in T with f faces inside C. Let ki, 1 € {1..f},
be the number of edges of the ith face with clockwise orientation (an edge
is oriented clockwise for one incident face and counter-clockwise for the
other). Each of these k; is an odd number. Hence

f

f= Zlq (mod 2) . (5.1)

i=1

Let e be the number of edges inside C. Then by Euler’s formula

v+ICl)—(e+IC)+(f+1)=2
= v—e+f=1 (5.2)

and, moreover,

f

> ki=k+te (5.3)

i=1

since every edge inside C is oriented in clockwise direction on exactly one
side. The ingredients are ready to cook.

(Zlq)—e = f—e = l—v=v+1 (mod?2)
(5.3) ! (5.1) (5.2)

For the fact that T is Pfaffian, observe that a nice cycle must have an
even number of vertices inside (a perfect matching cannot go across the
cycle). Therefore, every nice cycle has an odd number of edges oriented
clockwise in T’, thus it is oddly oriented.

Theorem 5.7 (Kasteleyn). Every planar graph has a Pfaffian orientation
which can be computed in linear time.

Proof. Observe that if a graph G has a Pfaffian orientation G , then all
subgraphs of G (with some edges removed) are Pfaffian orientations. This

—

holds, since removing edges just means setting some entries in A(G) to 0.

In this way we cannot generate negative terms in the sum » .. sign(7t)a(7).

142 CHAPTER 5. RANDOMIZED ALGEBRAIC ALGORITHMS

Figure 5.3: The trees B and B* for a triangulation.

So it suffices to show the claim for triangulations. Let us fix a crossing-
free embedding of a triangulation T. T has a spanning tree B, so far so
good. Now consider the dual graph B* of T where we use only edges not in
B. That is, every face represents a vertex (including the infinite face), and
two such vertices are connected by an edge if their faces share a common
edge which is not in B. Since B has no cycles, B* is connected, and since B
is connected, B* cannot have a cycle. So B* is a spanning tree® of the dual
graph of T.

Towards the Pfaffian orientation f, start by orienting the edges of B
arbitrarily. Now consider a leaf in B*. This represents a face t, a triangle,
where two edges are already oriented and one is still floating. Choose an
orientation for this floating edge so that things go well for t, i.e. so that t has
an odd number of clockwise oriented edges. Remove the vertex representing
t from B*, and continue the same, but never choosing the infinite face, even
if it turns into a leaf while B* gets truncated. In this way all faces have
indeed an odd number of clockwise edges, except for the infinite face, which
we are perfectly happy to accept.

The operations necessary for a planar graph — extending to a triangula-
tion, computing a spanning tree and the dual tree, and then the truncation
process — can be done in linear time (all easy, except for the triangulation
step which requires basically a planarity test, which is not that obvious to

9Tt has 2n — 4 vertices if T, and thus B, has n vertices, if you ask

5.6. COUNTING PERFECT MATCHINGS IN PLANAR GRAPHS 143

be done in linear time).

Corollary 5.8. The number of perfect matchings in a planar graph can be
determined in polynomaial time.

Wrap-up, Upper Bound for the Number of Perfect Matchings in Planar Graphs.
Hadamard tells us how big a determinant can be in terms of its entries.

Lemma 5.9 (Hadamard). If a;, a,,...a, are the columns of a matriz A =
((1@){321 c Rn><n’ then

n ‘] zn
et) < [< J;? -

(o]l = /b3 + b3+ -+ bf for b = (by, by,...,by).)

The first inequality in Lemma 5.9 is usually called the Hadamard in-
equality and the latter inequality follows from it by using that the geometric
mean is upper bounded by the arithmetic mean. An upper bound for the
number of perfect matchings readily follows for planar graphs.

Theorem 5.10. The number of perfect matchings in a planar graph with
n vertices is at most v/6 .

Proof. The number of perfect matchings cannot go down if we add
edges to a graph, therefore it suffices to consider triangulations for the
upper bound. Such a triangulation T has 3n — 6 edges (provided n > 3),
therefore the matrix A := A,(T) satisfies Yyaf =6n—12<e6n. If T is

Pfaffian then N
pm(T) = {/det(A) < \/\76 .

Exercise 5.11. Vertex Swaps in Orientations.

Let G be an orientation of a graph G and v a vertex in G. A swap at
vinG changes the orientation of all the edges incident to v, we obtain
a new orientation G’ of G. Show that an even cycle is oddly oriented
in G off it 1s oddly oriented in G'.

144 CHAPTER 5. RANDOMIZED ALGEBRAIC ALGORITHMS

Exercise 5.12. Prescribing Orientations.
Let G be a connected graph with a Pfaffian orientation and let B be
a spanning tree of G with 1ts edges oriented. Show that there 1s a
Pfaffian orientation G where the edges 1n B are oriented as prescribed
in B.

Exercise 5.13. No Good Orientation.
(1) Show that a graph containing a complete bipartite K,3 cannot be
oriented in such a way that every even cycle is oddly oriented. (Note
that this includes planar graphs.)

(2) Show that K33 cannot be oriented in such a way that all nice cycles
are oddly oriented.

Exercise 5.14. Characterizing Pfaffian.
Show that G is Pfaffian iff every nice cycle is oddly oriented. (That
18, supply the other direction of Lemma 5.5.)

Exercise 5.15. Swap-Equivalence.
Two orientations of a graph are called swap-equivalent, if one can be
obtained from the other by verter swaps (see Ezercise 5.11). Are any
two orientations of a plane triangulation, where every finite face has
an odd number of clockwise edges, swap-equivalent?

Exercise 5.16. Hamiltonian Cycles in Planar Graphs.
Show that a planar graph with n vertices can have at most V30" Hamil-
tonian cycles. (Perhaps start with a bound of \/gn, that should be

easy.)
Exercise 5.17. Determinant Vanishes.

Show that the determinant of a skew symmetric matrizc A € R™*™ 15 0
if n 1s odd.

