

Candidate:

Institute of Theoretical Computer Science Thomas Holenstein, Ueli Maurer, Angelika Steger, Emo Welzl, Peter Widmayer January 28, 2013

$Algorithms,\ Probability,\ and\ Computing Fall\ 2012 \ Final\ Exam$

First name:	 		
Last name:	 		
Student ID (Legi) Nr.:	 		
I attest with my signature understood the general rem	the exam under regula	r conditions and that	I have read and
Signature:	 		

General remarks and instructions:

- 1. You can solve the 5 exercises in any order. We recommend that you read all tasks. They are not ordered by difficulty or in any other meaningful way.
- 2. Check your exam documents for completeness (2 cover pages and 3 pages containing 5 exercises).
- 3. Immediately inform an assistant in case you are not able to take the exam under regular conditions. Later complaints are not accepted.
- 4. Pencils are not allowed. Pencil-written solutions will not be reviewed.
- 5. No auxiliary material allowed.
- 6. Attempts to cheat/defraud lead to immediate exclusion from the exam and can have judicial consequences.
- 7. Provide only one solution to each exercise. Cancel invalid solutions clearly.
- 8. All solutions must be understandable and well-founded. Write down the important thoughts in clear sentences and keywords. No points will be awarded for unfounded or incomprehensible solutions (except in the multiple-choice parts). You can write your solution in English or German.
- 9. You do not need to reprove things thats were already proved in the lecture. But if you want to prove something *different* then you must point out all details that need to be done differently in your proof.
- 10. Make sure to write your student-ID (**Legi-number**) on **all** the sheets (but **your name only on this cover sheet**).

	achieved points (maximum)	reviewer's signature
1	(30)	
2	(30)	
3	(30)	
4	(30)	
5	(30)	
Σ	(150)	

Exercise 1 - Multiple Choice (30 Pts)

Consider the following 6 claims and mark the corresponding boxes. Grading: 2 points for a correct marking without a correct justification, 5 points for a correct marking with a correct short justification, and -2 points for a wrongly marked box (you will receive non-negative total points in any case).

(a)	Consider a set L of n lines in the plane. It is possible to preprocess L with $O(n)$ storage to answer the following query in time $O(\log n + k)$: For a query point q report all lines l where q lies above l ; k is the number of such lines.			
	[] True [] False			
	Justification:			
	There exists a graph G s.t. if we orient every edge uniformly at random (mutually independent), the resulting orientation \overrightarrow{G} is Pfaffian with probability exactly $\frac{1}{7}$.			
	Justification:			
(c)	Remember that for a binary random variable X the $bias\ b(X)$ is defined as $1-2\mathbf{E}[X]$. Let X and Y be two (possibly dependent) binary random variables. Then $b(X\oplus Y)\leq b(X)b(Y)$.			
	Justification:			
(d)	For any satisfiable ClSP F , the Local-Lemma-Solver from the lecture terminates with probability 1.			
	Justification:			
(e)	Analogous to the lecture, we call a function $f: \{0,1\}^n \to \{0,1\}^n$ linear if $f(x) \oplus f(y) = f(x \oplus y)$ for all $x,y \in \{0,1\}^n$ (where \oplus means componentwise XOR).			
	There are $2^{(n^2)}$ linear functions from $\{0,1\}^n$ to $\{0,1\}^n$.			
	Justification:			
(f)	Let X_0 and X_1 be two random variables with some (finite) range \mathcal{X} . If $\Delta^D(X_0, X_1) \leq \varepsilon$ for all distinguishers D , then $\delta(X_0, X_1) \leq \varepsilon$. [] False [] True			
	Justification:			

¹Recall that $\Delta^{\cdot}(\cdot,\cdot)$ denotes the distinguishing advantage and $\delta(\cdot,\cdot)$ the statistical distance.

Exercise 2 - Cryptography (30 Pts)

- (a) Phrase the computational Diffie-Hellman problem as a game and prove that it is random self-reducible.
- (b) Consider a function $f: \{0,1\}^n \to \{0,1\}^n$ and define

$$g: \{0,1\}^{4n} \to \{0,1\}^{3n}, (w,x,y,z) \mapsto (f(x \oplus y), z, f(x) \oplus w)).$$

Recall that \mathcal{I}^f denotes the inversion problem for f. Show that

$$\mathcal{I}^f \quad \prec^{(\phi,=)} \quad \mathcal{I}^g$$

and

$$(\mathcal{I}^f)^2 \wedge \preceq^{(\phi',=)} \mathcal{I}^g$$

for some efficiency-preserving ϕ, ϕ' .² Which of the two reductions is more useful when one is interested in proving that g is harder to invert than f, and why?

Exercise 3 - Randomized Checking of Quadratic Forms (30 Pts)

Let $GF(2)^{n \times n}$ denote the set of $n \times n$ matrices over GF(2).

Consider the term $x^T A x$ for $x \in GF(2)^n$, $A \in GF(2)^{n \times n}$.

(a) Let n=2. Give a matrix A such that for $x \in_{\text{u.a.r.}} GF(2)^2$,

$$\Pr\left[x^T A x = 1\right] = \frac{1}{4}$$

(b) For general n, let $A \in_{\text{u.a.r.}} \text{GF}(2)^{n \times n}$. Show that for a given $x \neq 0$,

$$\Pr\left[x^T A x = 0\right] = \frac{1}{2}$$

(c) What is $\Pr[x^T A x = 0]$, if x and A are chosen independently uniformly at random?

²The exact efficiency notion is not relevant for the solution, but to exclude inefficient solutions, your solution should work for the standard poly-time notion: If W is implementable by a poly-time algorithm, then $\phi(W)$ and $\phi(W')$ must be as well.

Exercise 4 - Limited Verifier Capabilities (30 Pts)

Let L be a language and V(x, w) a polynomial time verifier with the following properties. The verifier expects a proof w of size polynomial in |x| for the statement $x \in L$. It first reads x, tosses $\mathcal{O}(\log |x|)$ random coins and reads at most q bits of the proof. If at least two of the read bits are 1, then it accepts. Otherwise it either accepts or rejects. If $x \in L$, then there exists a proof w such that the verifier accepts with probability 1. If $x \notin L$, then for all w, the verifier rejects with probability at least some constant $\rho > 0$.

The goal of this exercise is to show that in this case $L \in P$, i.e. there is a polynomial time algorithm deciding the language.

- (a) Prove that $L \in P$ under the assumption that V reads at most one bit (i.e. V always reads either zero or exactly one bit).
- (b) Prove that $L \in P$ under the assumption that V never reads exactly one bit (i.e. V always reads either zero or at least two bits).
- (c) Prove that L∈ P without the assumptions of (a) and (b).
 HINT: Start with the solution for (b) and modify it to accommodate the case when V reads exactly one bit.

Exercise 5 - A Simple Random Process (30 Pts)

Let $n \in \mathbf{N}$ and let $k_0 := n$.

We consider the following random process: First we choose a number $k_1 \in_{\text{u.a.r.}} [k_0]$, then a number $k_2 \in_{\text{u.a.r.}} [k_1]$, In general, we choose $k_{i+1} \in_{\text{u.a.r.}} [k_i]$ until we have reached $k_N = 1$. If we start with n = 1 then we terminate immediately and hence N = 0.

Let $t_n := \mathbf{E}[N]$ (in terms of n), i.e. the expected number of numbers chosen altogether when starting with n.

- (a) Determine t_1, t_2 and t_3 .
- (b) For $n \geq 2$, write t_n as a function of t_1, \ldots, t_{n-1} .
- (c) For $n \geq 3$, write t_n as a function of t_{n-1} .
- (d) Determine t_n .