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10. You may use anything that has been introduced and proved in the lecture or in the exercise
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However, if you need something di�erent than what we have shown, you must write a new
proof or at least list all necessary changes.
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Exercise 1: Randomized Quick-Sort (15 points)

We have learned the relation between a random search tree for n keys and randomized
quick-sort for n keys. The expected number of comparisons by randomized quick-sort
is O(n logn). Charge comparisons to the pivots. We are interested in the number of
comparisons that are charged to the median. For convenience, assume that n is odd, so
that the median is the key with rank dn

2
e.

Complete the following tasks:

(a) (5 points) Each key can be viewed as a node in a random search tree. Which
property of a node in the tree does the number of comparisons charged to the
associated key correspond to? Justify your answer.

(b) (5 points) Express the number of comparisons charged to the median in terms of
the ancestor indicator random variables Aji where i, j 2 [n], i.e.,

A
j
i =

{
1, if node j is ancestor of node i, and
0, otherwise.

(c) (5 points) Calculate the expected number of comparisons charged to the median.
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Exercise 2: Smallest Enclosing Parallel Rectangle (15 points)

Given a set of n points in the plane, the goal is to �nd the smallest axis-parallel rectangle
that encloses all the n points. This rectangle is determined by the maximum and the
minimum x- and y-coordinates among the n points. For simplicity, assume that the x-
and y-coordinates of the n points are all distinct. We are interested in a randomized
algorithm that inserts the n points one after one in a random order and maintains the
up-to-date smallest enclosing axis-parallel rectangle.

Complete the following tasks:

(a) (5 points) Analyze the probability that the i-th inserted point does not lie inside
the smallest enclosing axis-parallel rectangle of the �rst i− 1 inserted points.

(b) (5 points) Analyze the expected number of times that the smallest enclosing axis-
parallel rectangle changes during the randomized incremental construction.

(c) (5 points) Analyze the total construction time of the above-mentioned algorithm.
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Exercise 3: The r-Way Minimum Cut (15 points)

For a graph G = (V, E) with n vertices and m edges, an r-way minimum cut is a smallest
set of edges in E whose removal breaks the graph G into r or more connected components.
The randomized min-cut algorithm (without bootstrapping) can be modi�ed to compute
an r-way minimum cut. Complete the following tasks:

(a) (3 points) Explain how to modify the randomized min-cut algorithm.

(b) (4 points) Let k be the size of an r-way minimum cut and consider the fact that�
n−2
r−1

�
m � (m − k)

�
n
r−1

�
. (You do not need to prove this fact.) Use this fact to

prove that the probability that the �rst contraction will not change the size of an
r-way minimum cut is at least (n−r+1)(n−r)

n(n−1)
.

(c) (4 points) Prove that the success probability of the whole algorithm is at least

r−1∏
i=1

(r− i+ 1)(r− i)

(n− i+ 1)(n− i)
.

(d) (4 points) Calculate the number of repetitions of the whole algorithm to obtain an
r-way minimum cut with probability at least 1− 1

n
.
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Exercise 4: Perfect Matching in Bipartite Graph (15 points)

Given an unweighted bipartite graph G(A]B, E), the goal is to �nd a perfect matching
for G. Assume that there exists at least one perfect matching in G. You will �rst apply
linear programming to �nd a possibly fractional solution, and then modify the fractional
solution into an integral one. Enumerate vertices in A from 1 to |A| and vertices in B
from 1 to |B|, so that (i, j) represents the edge between i-th vertex in A and j-th vertex
in B if this edge exists in E. Then, one can de�ne a variable xi,j such that xi,j = 1 if (i, j)
is contained in the perfect matching and otherwise, xi,j = 0.

Complete the following tasks:

(a) (5 points) Design a linear program whose integral solutions are perfect matchings
in G.

(b) (5 points) Prove that a solution from (a) is fractional if and only if there exists an
even cycle whose all edges (i, j) are assigned a fractional value to xi,j.

(c) (5 points) Use the fact from (b) to turn a fractional solution from (a) into an integral
one.

(Hint : Modify xi,j along the edges (i, j) of a cycle. )
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Exercise 5: Randomized Algebraic Algorithms (15 points)

(a) (5 points) Let a 2 {0, 1, 2, . . . , k−1}n be a vector, and let r 2u.a.r {0, 1, 2, . . . ,m−1}n

be a random vector. Assume that k � m, and both k and m are prime numbers.
Compute Pr[aTr = 0 mod m].

(b) (5 points) Let A be an n � n matrix with 0/1-entries. For 1 � i, j � n let εi,j be
independent random variables, εi,j 2u.a.r. {1, 3}. Let B be the random matrix with
bi,j = εi,j � ai,j. Prove that E[detB] = 2

n � detA.

(c) (5 points) Let G = (VG, EG), VG = {1..n}, be a tree of n vertices. Prove that for any

orientation ~G of G, det
�
AS(~G)

�
� 1. Recall that

As(~G) = (aij)
n
i,j=1 2 {0,+1,−1}n�n , where

aij :=


+1 if (i, j) 2 E~G,
−1 if (j, i) 2 E~G, and
0 otherwise.

Hint : Prove that there exists at most one perfect matching in a tree.

11



12



Exercise 6: Parallel Sampling (10 points)

Design a randomized parallel algorithm that samples exactly k elements uniformly at
random from the n input elements without replacement. The required expected depth
is O(logn) and the required expected total work is O(n logn).
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Exercise 7: Parallel Heavy-Light Decomposition (15 points)

Consider a rooted tree T with n vertices and a root r. For each vertex v in T , its neighbors
are stored in a linked list Lv. Moreover, let Tv denote the subtree of T rooted at v and
let p(v) denote the parent of v. Complete the following two tasks:

(a) (8 points) A vertex u is a light child if |Tu| <
1
2
|Tp(u)|, i.e., the size of the subtree

rooted at u is less than half the size of the subtree rooted at p(u). Design a parallel
algorithm to identify all light children with O(logn) depth and with O(n) total
work.

(b) (7 points) The light root of a vertex v is de�ned recursively as follows:

lr(v) =


lr(p(v)) if both v and p(v) are light children,

v if v is a light child but p(v) is not,

; otherwise.

One can imagine to recursively trace the parents until the last one which is not a
light child of its parent. Design a parallel algorithm to compute the light root for
all the vertices with O(log logn) depth and with O(n log logn) total work.

Hint : Think about the largest possible length of the path between a vertex and
its light root.
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