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General remarks and instructions

10.

. Check your exam documents for completeness (pages numbered from 1 to 11, with one

exercise on every page except for the two cover pages).

. You can solve the exercises in any order. You should not be worried if you cannot solve

all exercises! Not all points are required to get the best grade.

Immediately inform an assistant in case you are not able to take the exam under regular
conditions. Later complaints will not be accepted.

Pencils are not allowed. Pencil-written solutions will not be reviewed.

. No auxiliary material allowed. All electronic devices must be turned off and are not allowed

to be on your desk. We will write the current time on the blackboard every 15 minutes.

. Attempts to cheat/defraud lead to immediate exclusion from the exam and can have judicial

consequences.
Provide only one solution to each exercise. Cancel invalid solutions clearly.

All solutions must be understandable and well-founded. Write down the important thoughts in
clear sentences and keywords. Unless stated otherwise, no points will be awarded for unfounded or
incomprehensible solutions. You can write your solutions in English or German.

. You may use anything that has been introduced and proved in the lecture or in the exercise

sessions without reproving it. However, if you need something different than what we have
shown, you must write a new proof or at least list all necessary changes.

Write your student-ID (Legi-number) on all sheets (and your name only on this cover sheet).

Good luck!
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Exercise 1: Multiple Choice (20 points)

Consider the following four claims/questions and mark the corresponding boxes. Grad-
ing: 2 points for a correct marking without a correct justification, 5 points for a correct
marking with a correct short justification, and —2 points for a wrongly marked box. You
will receive a non-negative total number of points for the whole exercise in any case.

(a) Suppose that a sequence (a,),>; of strictly positive numbers satisfies a2 = 5 ' a?

for n > 2. Then a, = @(\/Zn). [ ] False [ ] True

(b) The expected number of comparisons done by randomized quicksort can be (‘2‘) in

the worst case.
[ ] False [ ] True

(c) Let p =x1(x2 + x3%4 — X5%g) € Q[x1,...,Xe].

If X €uar. {0,1)° then Prlp(X) =0] < 3. [ ] False [ ] True

(d) Let a €{0,1}%, a #0, and let v €., {0, 1}°.
Then Pr [rTa =0 mod 2} equals exactly 1.



Random(ized) Search Trees

Exercise 2.1 (10 points)

Let R,, denote the number of nodes with empty right subtree in a random search tree on
n keys (n € Ny). Find a recurrence for r,, := E[R,] and solve it.



Exercise 2.2 (5 points)

Let x € [n], and let B denote the indicator variable for the event that node x is a leaf or
node x 1s the root in a random search tree on n keys. Express B in terms of the indicator
variables A} = [node j is ancestor of node 1], using only arithmetic operations.



Exercise 2.3 (5 points)

The node 13 has been inserted into a treap, and the resulting treap is shown below. How
many rotations were performed during the insertion of node 137




Point Location

Exercise 3.1 (5 points)

The picture on the right consists of the duals p} of the points p; on the left. Both
pictures were drawn in a standard coordinate system, with the y-axis pointing up (and
then they were scaled to fit nicely on the page).

Identify the points (7,...,{: and label each of them clearly. You do not need to justify
your answer.




Exercise 3.2 (10 points)
Let q € R? be a point, and let L be a set of n > 5 lines in R2. We make the following
assumption: For every circle C C R?, at most five lines from L are tangent to C.

Let ¢;,...,¢, be a permutation of L chosen uniformly at random, and suppose that
y,...,{, are inserted one by one into an initially empty line arrangement. For every
i € [n] we consider “the line arrangement at time i”,

Ai:{eh"wei})

and we define A{ C A; as the subset that consists of those lines whose distance to q is
Uicy A{| denote the number of distinct lines nearest to q encountered

minimal. Let N =
in this process.

In the example on the side, we have |[A3| =2
and |A)| = 1.

Show that we have E[N] < 5Inn. o o



Exercise 3.3 (5 points)

You are given a list of points p;...,pn € R? with the guarantee that they are the
vertices of a polygon in counter-clockwise order. The polygon is not necessarily convex,
but without holes, as in the picture. Explain how to preprocess the list so that you can
determine for any query point q € R? in less than linear expected time whether it lies

inside, outside, or on the boundary of the polygon. Explain also
(i) how you answer queries and how long this takes, and

(ii) how much space your data structure uses.

Pn-1

Pn
D4



Minimum Cut

Exercise 4.1 (5 points)

Let G be the (multi)graph with vertices O,...,10 depicted below, and let e be an
edge of G chosen uniformly at random. Calculate the value of Pr[u(G) = u(G/e)] and

E[n(G/e)].

To make your life easier in this exercise, you may make statements of the type “the
minimum cuts in the graph are ...” without proof.
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Exercise 4.2 (10 points)

We have seen in the lecture that the success probability for a single run of MINCUT on
any n-vertex input graph satisfies P(n) > 1/(1 + log. n) for all n > 2, where c = 1.2.
Describe how to compute the size of a minimum cut with a success probability of

P'(n) >1— i
nn

Calculate explicitly (without O-notation or similar) how often your algorithm should
call MINCuT in order to satisfy this bound, and then show that the overall running time
is O(n®log’n).
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