
Institute of Theoretical Computer Science

Rasmus Kyng, Bernd Gärtner, David Steurer, Vera Traub

Algorithms, Probability, and Computing Solutions KW51 HS25

Solution 1

Each leaf node u in the tree T = (V, E) is given a number b(u). We want to devise a
parallel algorithm with O(logn) depth and O(n) total computation that computes for
each node v the value sl(v), the summations of the b(u) values over all the leaves u that
are descendants of v. We use the Eulerian tour technique again. After having identi�ed
the parents, we now de�ne new weights for the arcs. We setw(< parent(v), v >) = w(<
v, parent(v) >) = 0 if v is not a leaf and w(< v, parent(v) >) = b(v) if v is a leaf.
In other words, all arcs have weight zero, except the backward edges from the leaves.
Now, we compute all the pre�x sums of these weights, on the linked list provided by
our Eulerian path. For each node v, the di�erence between the pre�x sum on the arc
< v, parent(v) > and < parent(v), v > is equivalent to the sum of all arcs in the subtree
rooted in v, plus w(< v, parent(v) >). This is clearly the same as the summations of the
b(u) values over all the leaves u that are descendants of v (including itself). Thus, we
simply set sl(v) to be the pre�x sum on the arc < v, parent(v) > minus the pre�x sum
on the arc < parent(v), v >. Again, the depth and total computations of the algorithm
is asymptotically equivalent to the algorithm for computing the pre-order numbering,
i.e., O(logn) depth and O(n) work. The only di�erence is that at the end we subtract
two pre�x sum to compute sl(v) for each node v in parallel, which does not change the
depth and total work value asymptotically.

Solution 2

We are given an array of length n and each element in it is tagged with a number
in {1, 2, . . . ,

p
n}, which indicates the index of its subproblem.Our goal is to devise an

algorithm that in O(logn) depth and using O(n logn) work, creates one array Ai for
each of the subproblems i 2 {1, . . . ,

p
n}, holding all the elements tagged with number

i.

For the sake of simplicity, we discuss in the terms of processors and show that we
can handle this task by using n processors and O(logn) time-steps. This immediately
provides us with the depth O(logn) and work O(n logn).

As the hint suggests, imagine that we set a balanced binary tree on the n elements,
where each leaf corresponds to an element in the array. Assume that for each leaf there
is one processor which keeps a linked list of size one. This linked list includes the value
of the corresponding element in the array. Assume that the processor associates a tag

1

and an id to the linked list, where the tag is simply the tag of the element and the id is
the index of the element in the array.

Let v be a node in the binary tree, who has two children u and w. Furthermore, assume
that node u (similarly w) is keeping a linked list for each group of elements in its subtree
with the same tag (the elements corresponding to the leaves of the subtree rooted at
u). Furthermore, assume each linked list has a processor that is responsible for it and
knows the id of the linked list, its tag, and start/end of the linked list. We claim that
it is possible that each of these processors does O(1) work, and afterwards node v will
have the merged version of these linked lists. More precisely, node v will have a linked
list for each group of elements which are in its subtree and have the same tag and each
linked list has an assigned processor that is responsible for it and knows the id of the
linked list (if the linked list is not merged we keep the id, otherwise take the minimum
one), its tag, and start/end of the linked list. If our claim is true, by starting from the
above initial con�guration where we only have set the leaves, after O(logn) time-steps
we will end up with a group of linked lists in the root of the tree such that each linked
list includes exactly all elements with some tag from {1, � � � ,pn}.
If there is a linked list in u (similarly w) and there is no linked list with the same tag
in node w (respectively u) simply keep the linked list in v with the same tag, id, and
assigned processor. Now, assume there are two linked lists L and L 0 respectively in u
and w and assigned processors p and p 0. Without loss of generality, assume that the
id of L is smaller than the id of L 0; then, we simply concatenate the two linked lists
and assign the id of L to the new linked list and let processor p be responsible for it
(we do not need processor p 0 anymore). There is one subtle point here: How do the
processors know about each other's linked lists? To address this, we assign a �xed part
of the shared memory to every possible choice of a node and a tag to keep the necessary
information, like id and start/end, if a linked list with that tag appears in that node
during the process. Thus, for instance in the above argument processor p (similarly p 0)
knows which part of the memory it should check to �nd out whether there is a linked
list with similar tag in w (respectively u) or not. If yes, then it compares the ids and if
the id of its linked list is smaller, it will concatenate its linked list to the other one and
will write the updated information (id and start/end) in the part of the memory which
is assigned to this newly created linked list, which is determined by the tag and node
v.

We start with n processors and during the process might even get rid of some of them
and during each of the O(logn) time-steps every processor does O(1) work. Therefore,
so far we need O(n logn) work and O(logn) depth.

We need to turn each linked list into an array at the end. To do that, we assign to each
element in the linked list weight one and apply a pre�x sum on all the weights. This
assigns each element in the linked list with a unique integer from 1 to `, where ` is the
length of the linked list. Now, create an array of size ` and write each element in the
index corresponding to its pre�x sum. This does not change the asymptotic value of
the depth and work needed, since we can do parallel pre�x with O(logn) depth and
O(n) work for an array of size n. After all, each element is in exactly one array and the
summation of the lengths of the arrays is equal to n.

2

Finally, it is worth to stress that the value
p
n is irrelevant and the aforementioned

argument applies to any set of tags.

Solution 3

We want to show that it is possible to simultaneously identify the minimum neighbors
for all the fragments, using O(logn) depth and O(m+ n logn) work.

(A) We use a similar idea to the one from Exercise 1. Again consider a balanced binary
tree with n leaves and height O(logn). We assign to each of the leaves the adjacency
list of one of the nodes in the graph. Assume the tag of each linked list is the root of
the fragment that the corresponding node belongs to and its id is simply the label of the
node (suppose the nodes are labeled from 1 to n). Furthermore, there are n processors
each responsible for one of the linked lists. Now, we can apply the same argument as
in Exercise 1 to show that after logarithmically many rounds and by doing O(n logn)
work, we have f linked lists, where f is the number of fragments, such that each linked
list contains exactly all elements from one of the fragments (the elements here are the
nodes which share at least one edge with the fragment). Analogous to Exercise 1 we
can turn each of these linked lists to an array by applying the parallel pre�x. However,
here we would need O(m) work and O(logm) = O(logn) depth since each linked list
could have up to m elements. Thus, we can do the required sub-task in depth O(logn)
and work O(m + n logn). Note that the sum of the lengths of these arrays is at most
2m since for each edge both of its end-points appear as the elements of the initial linked
lists. Furthermore, if a node is connected to more than one node in some fragment fi,
then several copies of it might exist in the array Ai created for fi but that is not an issue
at all.

(B) Each array Ai generated in part (A) for a fragment fi includes all nodes which share
at least one edge with nodes in fi (as mentioned above, there might be several copies of
node). Now, in parallel we check the pointer of each node in the array, which is pointing
to the root of the fragment that it belongs to. If the pointer is pointing to the root of
fragment fi, say ri, we replace it with +∞, otherwise we replace it with its successor,
which is the root of some other fragment. It is easy to see that this is done in depth O(1)
and work O(m) since as discussed in part (A) the sum of the lengths of these arrays is
2m and we handle each entry separately in constant time.

(C) We can �nd the minimum value in each of the modi�ed arrays from (B) inO(logm) =
O(logn) depth and

∑f
i=1O(mi) work, where f is the number of fragments and mi is the

size of array Ai. Since
∑f

i=1mi = 2m, the work needed is O(m).

Solution 4

Consider a component which contains nodes with identi�ers 1, � � � , n 0 for some n 0 � n.
We want to show that at the end of the algorithm, the component will have its identi�er
equal to the minimum identi�er among the nodes, which is 1. Recall that initially we

3

have fragments f1, � � � , fn 0, where fragment fi includes node i with a self-loop. Then, in
each time-step for each root node r, we remove its self-loop in its fragment and instead
set D(r) = p(r), i.e., the root of the proposed fragment with which the fragment of
r wants to merge. Notice each fragment proposes to the neighboring fragment with
minimum identi�er. By applying an inductive argument, we show that node 1 is the
root of the fragment that it belongs to at the end of each time-step. Initially this is
trivially true. Assume that the statement is true by the end of the i-th time-step. Now,
all the proposals are applied. If there is only one fragment left in this component, then
no merging happens and 1 remains as the root of the component. Otherwise node 1
proposes to another root r and r also trivially proposes to node 1. Thus we will have
a pseudo-tree with the cycle of length two between nodes 1 and r. Then, we do logn
repetitions of pointer-jumping. More precisely, for logn repetitions, for each node v,
we set D(v) = D(D(v)). Afterwards, the pointer D(v) of each node is to 1 or r. As a
�nal step, we set D(v) = minD(v), D(D(v)), so that all nodes will point to 1. Thus, our
claim is correct.

Solution 5

Let us �rst sketch the main idea of the solution and discuss intuitively why it should
work. We pick n0.9 pivots at random. Then, we sort these pivots, which is doable in
our desired work and depth. If we consider the sorted sequence of the elements, the
pivots partition it into parts of size roughly n0.1. If we label the sorted pivots from e1
up to en0.9 , one would expect to �nd the k-th element somewhere close to ebk/n0.1c in
the sorted sequence. The idea is to show that if we actually pick a close neighborhood
of pivot ebk/n0.1c in the sorted sequence, namely n1−ε elements before and n1−ε elements
after for some small constant ε > 0, then the k-th element will be among them with our
required probability. Thus, we will be left with O(n1−ε) elements. One can simply sort
all these elements in O(n1−ε logn1−ε) = O(n) work and O(logn1−ε) depth. In the rest
of the solution, we provide a formal argument for this claim.

Let us mention that we will apply the following variant of the Cherno� bound several
times. Furthermore, we say an event happens with high probability (or shortly w.h.p.)
if it occurs with probability 1−O(n−c) for some constant c � 1, let's say c = 5 for this
exercise.

Theorem 1. (Additive Cherno� bound) Suppose X1, � � � , Xn are independent random
variables taking values in {0, 1} and let X denote their sum, then for any t > 0

Pr[|X− E[X]| � t] � 2e−2t2/n.

We set each element as a pivot with probability 1/n0.1 independently. (Note that the
independence is a key property here since it allows us to apply the Cherno� bound.) In
this way, in expectation we will have n0.9 pivots, but actually we might get more or less
than n0.9 pivots. By applying a Cherno� Bound, one can show that with high probability
the number of selected pivots is upper bounded by 2n0.9. In that case, we can sort the

4

pivots with O(n) work and O(logn) depth. Let N denote the number of sampled pivots
and e1, e2, . . . , eN the pivots in sorted order. As we said, one would expect the k-th
element to appear somewhere close to ek/n0.1 in the sorted sequence. In Proposition 2,
we phrase this formally.

Proposition 2. The k-th element is between pivots edµ−n0.6e and ebµ+n0.6c in the sorted
sequence w.h.p. where µ = k

n0.1 .

In the above statement, the indices might take values smaller than 1 or larger than N. To
�x that, one can simply consider two auxiliary pivots e0 and eN+1 which are respectively
the smallest and largest element and assign the non-de�ned pivots to these two pivots.

Proof. Let random variable Xi be 1 if the i-th element in the sorted sequence is a pivot
and 0 otherwise. De�ne random variable X :=

∑k
i=1 Xi which is the number of pivots

smaller than or equal to the k-th element. E[Xi] = 1
n0.1 for each 1 � i � k, which implies

that E[X] = k
n0.1 = µ by linearity of expectation. Now, by applying the Cherno� bound,

we get

Pr[|X− µ| � n0.6] � 2e−2(n0.6)
2
/n = O(n−5).

Thus, w.h.p. the k-th element is larger than edµ−n0.6e and smaller than ebµ+n0.6c.

Proposition 3. Among every n0.9 consecutive elements in the sorted sequence, there
are at least n0.7 pivots w.h.p..

Proof. Consider a sequence of length n0.9. Let random variable Y denote the number
of pivots in this sequence. We have E[Y] = n0.9

n0.1 = n0.8 and Y is the summation of n0.9

independent random variables. Thus, by applying the Cherno� bound we get

Pr[Y � n0.7] � Pr[|Y − E[Y]| � n0.8 − n0.7 � O(n−6).

There are at most n such sequences; thus, by applying the union bound with probability
1 − O(1

n5), among every n0.9 consecutive elements in the sorted sequence, there are at
least n0.7 pivots.

We put Proposition 2 and Proposition 3 in parallel to prove our claim. We can �nd
out which elements are between edµ−n0.6e and ebµ+n0.6c by O(n) work and O(1) depth.
Based on Proposition 2, the k-th element must be among them w.h.p.. Furthermore, by
Proposition 3, the number of these elements is less than n0.9. This is true since from
edµ−n0.6e to ebµ+n0.6c in the sorted sequence, there are O(n0.6) pivots. Therefore, now we
are left with at most n0.9 elements, that we can sort in O(n0.9 logn0.9) = O(n) work and
O(logn) depth. The k-th element that we are looking for is the (k − k 0)-th element in
this sorted sequence, where k 0 is the number of elements smaller than edµ−n0.6e. It is left
to compute k 0. Create an array B of size n and compare all elements with edµ−n0.6e in
parallel and set B[i] = 1 if A[i] < edµ−n0.6e and B[i] = 0 otherwise. Now, a parallel pre�x
on B gives us k 0, which can be done in O(n) work and O(logn) depth.

5

