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I assume that you have some preknowledge in probability theory, but let us
recapitulate the small subset of it which we will need for our purposes. We will em-
ploy very concrete probability theory (as opposed to abstract probability theory);
we simply use it as a tool. When writing this I borrowed much from Chapter
8 in the book Concrete Mathematics, A Foundation for Computer Science
by Ronald L. Graham, Donald E. Knuth and Oren Patashnik (Addison-Wesley
(1989)). A book to be recommended not only for that chapter.

We restrict ourselves to discrete probability spaces, and we will omit `discrete'
from now on. Roughly speaking, such a probability space consists of a (possibly in-
�nite) set of things that can happen, each of which gets assigned a probability that
it happens. This mapping is called probability distribution, since it distributes
the value 1 among the things that can happen.

Definition 1 (Probability Space) A probability space is a pair (Ω, Pr)
where Ω is a set and Pr is a mapping Ω → R

+

0 such that
∑
ω∈Ω

Pr [ω] = 1 .

Every subset E of Ω is called an event, and the mapping Pr is extended
to events by setting

Pr [E ] :=
∑
ω∈E

Pr [ω] .

The elements in Ω are the elementary events. If Ω is �nite and Pr [ω] =
1

|Ω|
for all ω ∈ Ω, then Pr is called uniform distribution on Ω. We use

Ω+ for the set of elementary events with positive probability,

Ω+ := {ω ∈ Ω | Pr [ω] > 0} .
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Rolling dice. Consider the six sides of a die denoted by

D =
{

1 , 2 , 3 , 4 , 5 , 6
}

.

D models the top side of the die as it lands on the table in an experiment. We
consider fair dice, i.e. Pr [d] = 1

6
for all d ∈ D. The pair (D, Pr) is a probability

space with uniform distribution.
For example, Deven = { 2 , 4 , 6 } is the event of having an even number of

spots on the top side; Pr [Deven] = 3× 1
6

= 1
2
.

Rolling a pair of fair dice is modeled by the set

DD := D2 =
{

1 1 , 1 2 , 1 3 , . . . , 6 5 , 6 6
}

of 36 elementary events with the uniform distribution. Note that the two dice
are assumed to be distinguishable, say one as the �rst die, and the other as the
second. For the event

DD= =
{

1 1 , 2 2 , 3 3 , 4 4 , 5 5 , 6 6
}

we have Pr [DD= ] = 6× 1
36

= 1
6
, and we say that the probability of having the same

number of spots on both dice is 1
6
. The event, DD6=, of having a distinct number

of spots on the dice is the event complementary to Pr [DD= ]; hence, Pr
[
DD6=

]
=

1− Pr [DD=] = 5
6
. The event DD6= partitions into the event DD< of having more spots

on the second die than on the �rst, and DD> = DD6= \ DD<. DD> and DD< have the
same cardinality because of the bijection dd ′ 7→ d ′d. Hence,

Pr [DD>] = Pr [DD<] =
Pr

[
DD6=

]

2
=

5

12
.

Flipping coins. Another classical probability space is that of a coin falling on
one of its two sides, which results in head or tail with some given probability.
Let us use C = {©H ,©T } for the set of elementary events, and let Pr [©H ] = p and
Pr [©T ] = 1 − p for some p ∈ R, 0 < p < 1. If p = 1

2
, then we call the coin

fair; otherwise, it is called biased. What if we want to model the experiment of
repeatedly 
ipping a coin until we end up seeing head for the �rst time? Then

C ′ = { ©H︸︷︷︸
e0

,©T©H︸︷︷︸
e1

,©T©T©H︸ ︷︷ ︸
e2

, . . .} ∪ {©T©T©T · · ·︸ ︷︷ ︸
e∞

}

where we introduced some convenient shorthands for the elementary events. Here
Pr [ei] = p(1 − p)i, for i ∈ N0, and Pr [e∞] = 0. At this point accept this as
a de�nition and check that indeed

∑∞
i=0 p(1 − p)i = 1. Let C ′

0 = {ei | i even},
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the event of waiting an even number of tails until we succeed to see a head. Let
C ′

1 = {ei | i odd}. We have

Pr [C ′
0] =

∞∑
i=0

p(1 − p)2i = p

∞∑
i=0

(
(1 − p)2

)i
=

p

1 − (1 − p)2
=

1

2 − p
.

Since C ′
1 is { apart from a zero probability elementary event { the event comple-

mentary to C ′
0, we have

Pr [C ′
1] = 1 −

1

2 − p
=

1 − p

2 − p
.

Definition 2 (Random variable) Given a probability space (Ω, Pr), a
random variable is a real-valued function de�ned on the elementary events
of a probability space, i.e.

X : Ω → R .

If E is an event, then
ω 7→ [ω ∈ E ]

is the indicator variable for event E. (The fact that a random variable has
to be real-valued is a restriction we apply here. In general, the image of
a random variable may be just any set.)

For the probability space of a single rolling die, we could consider the random
variable Xtop that maps the top side to the number of spots we see on this side

Xtop : 1 7→ 1, 2 7→ 2, 3 7→ 3, 4 7→ 4, 5 7→ 5, 6 7→ 6 ,

or we could map to the number of spots on the invisible side sitting on the table

Xbot : 1 7→ 6, 2 7→ 5, 3 7→ 4, 4 7→ 3, 5 7→ 2, 6 7→ 1 .

The mapping

Y : 1 7→ 0, 2 7→ 1, 3 7→ 0, 4 7→ 1, 5 7→ 0, 6 7→ 1

is the indicator variable for the event of seeing an even number of spots (previously
denoted by Deven).

Note that Xtop and Xbot depend on each other in the following sense. Suppose
we know Xtop(d) for some d ∈ D, without knowing d itself, then we know also
Xbot(d), because Xtop(d) + Xbot(d) = 7 for all d ∈ D. We write this as

Xtop + Xbot = 7
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for short, omitting the `(d)'. Similarly, Xtop depends on Y, although not as ex-
plicitly as Xtop depends on Xbot. Namely, Y = 1 tells us something about Xtop:
Y(d) = 1 ⇒ Xtop(d) ∈ {2, 4, 6}, which we abbreviate as

Y = 1 ⇒ Xtop ∈ {2, 4, 6} .

In contrast to this consider two random variables X1 and X2 on the space of two
rolling dice. X1 maps to the number of spots on the �rst die and X2 to the number
of spots on the second die. If X1(ω) = 3, say, we cannot give a better prediction
for the value of X2(ω). The same is true for any value possibly attained by X1.
So X1 and X2 have completely independent behavior.

For a last example in this context, let Z be the indicator variable for the event
that the number of spots on the �rst die is at most the number of spots on the
second die; we could write this as Z := [X1 ≤ X2]. Now, Z(ω) = 1 for some ω ∈ DD

still allows all possible outcomes of X2(ω). However, X2 depends on Z in the sense
that Z = 1 makes it more (and most) likely that X2 = 6. That is, knowledge of Z

allows a better prediction of X2 (again, without seeing the underlying event).
Next we will formally capture this intuitive notion of independence.

Definition 3 (Independence) Let X and Y be random variables de�ned
on a common probability space. We say that X and Y are independent
random variables if

Pr [X = x ∧ Y = y] = Pr [X = x] · Pr [Y = y]

for all x, y ∈ R. A collection Xi, 1 ≤ i ≤ n of random variables on a
common probability space is called mutually independent if

Pr [Xi1 = xi1 ∧ Xi2 = xi2 ∧ · · ·∧ Xik = xik ] =

Pr [Xi1 = xi1] · Pr [Xi2 = xi2] · · · · · Pr [Xik = xik ]

for all k ∈ {2..n}, 1 ≤ i1 < i2 < · · · < ik ≤ n, and (xi1 , xi2, . . . , xik) ∈ Rk.

Again, we have used some jargon: `X = x' short for the event {ω ∈ Ω | X(ω) =

x}, `X = x ∧ Y = y' short for {ω ∈ Ω | X(ω) = x ∧ Y(ω) = y} etc.
It is important to realize that mutual independence is di�erent from pairwise

independence. For an example, consider the probability space of a pair of fair
coins,

C2 = {©T©T ,©T©H ,©H©T ,©H©H }

with uniform distribution. Now we de�ne three indicator variables

H1 := [ �rst coin shows ©H ] ,

H2 := [ second coin shows ©H ] , and
H3 := [ exactly one coin shows ©H ] .
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All three variables attain both 0 and 1 with probability 1
2
. We can verify that the

variables are pairwise independent, but

Pr [�rst coin shows ©H ∧ second coin shows ©H ∧ exactly one coin shows ©H ] = 0

and not 1
8

as required for mutual independence.

Definition 4 (Expectation) Let X be a random real-valued variable. The
expectation ( expected value, mean) of X is de�ned as

E[X] :=
∑

x∈X(Ω+)

x · Pr [X = x] (1)

provided this in�nite sum exists.

For the example of rolling dice we have

E
[
Xtop

]
=

6∑
i=1

i
1

6
=

21

6
=

7

2
= 3.5 (2)

or for the random variable Xtop2

E
[
Xtop2

]
=

6∑
i=1

i2
1

6
=

1 + 4 + 9 + 16 + 25 + 36

6
=

91

6
= 15.16...

Note that this was just another shorthand. We used Xtop2 for the random variable

ω 7→ (Xtop(ω))2 .

Observe that in our example ( E[Xtop])2 = 49
4
6= 91

6
= E

[
Xtop2

]
. Also, if X and Y

are random variables, then we cannot expect E[XY] = E[X] E[Y]. Here XY stands
for the random variable ω 7→ X(ω)Y(ω).

Consider Xtop and Xbot as de�ned for a single die. Then

E
[
XtopXbot

]
=

1× 6 + 2× 5 + 3× 4 + 4× 3 + 5× 2 + 6× 1

6
=

28

3
= 9.33...

which is obviously not equal to E[Xtop] E[Xbot] = 49
4

= 12.25.
However, when it comes to linear functions of random variables, we have the

following lemma, which is absolutely central for our investigations!

Lemma 1 (Linearity of Expectation) Let X and Y be random variables
de�ned on a common probability space and let c ∈ R. Then

E[cX] = c E[X] and E[X + Y] = E[X] + E[Y] ,

provided E[X] and E[Y] exist.
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Here is one typical route along which we will use the linearity of expectation.
Recall the experiment of repeatedly 
ipping a coin until we see head for the �rst
time, assuming that the coin 
ips are independent and head appears with proba-
bility p, 0 < p < 1. What is the expectation for the number, X, of tails we see?
Denote by Xi, i ∈ N, the indicator variable that we see a tail in the ith round
without having seen a head before. We have X =

∑∞
i=1 Xi. Pr [Xi = 1] = (1 − p)i,

since this is a conjunction of i independent trials with success probability (1 − p).
Hence,

E[Xi] = 1× Pr [Xi = 1] + 0× Pr [Xi = 0] = Pr [Xi = 1] = (1 − p)i ,

and1

E[X] = E




∞∑
i=1

Xi


 =

∞∑
i=1

E[Xi] =

∞∑
i=1

(1 − p)i =
1

1 − (1 − p)
− 1 =

1 − p

p
.

Note that the Xi's are not independent: Xj = 1 ⇒ Xi = 1 for all i < j, and so
Pr [Xi = 1 ∧ Xj = 1] = (1 − p)j 6= (1 − p)i+j.

There is a direct way of deriving this expectation, since we know the prob-
abilities Pr [X = i], i ∈ N0. But in many instances we will appreciate that it is
possible to determine the expectation without knowing the distribution.

The lemma on the linearity of expectation made no request for independence,
while this is required for a similar statement about the product of random vari-
ables.

Lemma 2 (Product of Independent Random Variables) Let X and Y

be two independent random variables de�ned on a common probability
space. Then

E[XY] = E[X] E[Y] ,

provided E[X] and E[Y] exist.

Here is a small `triviality' which is the core of the so-called probabilistic method,
where one proves the existence of certain objects by analyzing random objects.

Lemma 3 (Existence from Expectation) Let X be a random variable on
a probability space (Ω, Pr) for which the expectation E[X] exists. Then
there exist elementary events ω1 and ω2 with

X(ω1) ≤ E[X] and X(ω2) ≥ E[X] .

Here is another simple fact which we will employ for deriving estimates for the
probability that a random variable exceeds a certain value { so-called tail esti-
mates.

1Here we have to say \provided all expectations and sums involved exist!"
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Lemma 4 (Markov’s Inequality) Let X be a nonnegative random vari-
able (i.e. X(Ω) ⊆ R+

0 ) for which E[X] > 0 exists. Then, for all λ ∈ R
+,

Pr [X ≥ λ E[X]] ≤ 1

λ
.

Equality holds i� X(Ω+) ⊆ {0, λ E[X]}.

Proof Let t ∈ R
+.

E[X] =
∑

x∈X(Ω+)

x · Pr [X = x]

=
∑

x∈X(Ω+), x<t

x︸︷︷︸
≥0

·Pr [X = x] +
∑

x∈X(Ω+), x≥t

x︸︷︷︸
≥t

·Pr [X = x]

≥ t ·
∑

x∈X(Ω+), x≥t

Pr [X = x]

= t · Pr [X ≥ t]

That is,

Pr [X ≥ t] ≤ E[X]

t
, for all t ∈ R

+.

Moreover, the inequality is strict i� there exists an x ∈ X(Ω+) with 0 < x < t,
or there exists an x ∈ X(Ω+) with x > t. It follows that both inequalities are
identities i� x ∈ X(Ω+) implies x ∈ {0, t}.

Now set t = λ E[X] to conclude the statement of the lemma.

We close this section with a short discussion of conditional probabilities and
expectations.

Suppose somebody, call him Mr. McChance, o�ers you the following deal.
First, you get 3.5 swiss francs. Then you have to roll two dice. If the second die
shows a larger number of spots than the �rst one, you have to return that number
(of spots on the second) of francs to friendly Mr. McChance; otherwise you have
to return 2.5 francs to him. That may look quite attractive, at �rst glance, since
the expected number of spots on the top face of the second rolling die is 3.5. And
we even have some chance of paying 2.5 only. But then you play the game several
times, and it looks like you are losing. You are getting worried, and decide upon
a thorough investigation of the game.

In order to analyze our expected gain or loss in the game, we have to distinguish
two cases: The event DD≥ of the �rst die showing at least as many spots as the
second, and the complementary event
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DD< = { 1 2 , 1 3 , 1 4 , 1 5 , 1 6 ,

2 3 , 2 4 , 2 5 , 2 6 ,

3 4 , 3 5 , 3 6 ,

4 5 , 4 6 ,

5 6 }

Here, of course, we see the pitfall of the procedure. Given the event, that we
have to pay the number of spots on the second die, this number tends to be
large { there is no con�guration for that number to be 1, one for it to be 2, . . . ,
while there are 5 for it to be 6. Within the space of the 15 possible elementary
events in DD<, assuming uniform distribution among them, we expect to pay

2× 1

15
+ 3× 2

15
+ 4× 3

15
+ 5× 4

15
+ 6× 5

15
=

70

15
= 4.66... .

So much for the bad news. But we may be lucky, DD≥ occurs (the chance for this
to happen is 21 in 36 cases), and we have to pay 2.5 francs. We weight the two
cases according to their probabilities to occur, and conclude that the expected
number of francs we have to pay back is

70

15
× 15

36
+

5

2
× 21

36
=

245

72
= 3.402... .

So, after all, we have an expected gain of roughly 0.1 Swiss francs in the game.
We can conclude that either (i) we made a mistake in our calculation, (ii) Mr.
McChance brought loaded dice with him, (iii) bad luck, (iv) etc.

The analysis we just performed employs conditional probabilities { an essential
tool in the analysis of randomized algorithms.
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Definition 5 (Conditional Probabilities) Let A and B be events in a
probability space with Pr [B] > 0. The conditional probability of A, given
B, is de�ned to be

Pr [A |B] :=
Pr [A ∩ B]

Pr [B]
.

(In particular, let X and Y be random variables de�ned on a common
probability space. Then the conditional probability of the event X = x,
given the event Y = y, is

Pr [X = x |Y = y] =
Pr [X = x ∧ Y = y]

Pr [Y = y]

for all x, y ∈ R with Pr [Y = y] > 0.)
Let X be a random variable and B be an event in a common probability
space, Pr [B] > 0. Then X | B is the random variable obtained as the
restriction of X to the probability space (B, Pr ′) with

Pr ′ : ω 7→ Pr [ω]

Pr [B]
.

Conditional probabilities usually create some `notational confusion'. Let's just
add to this by asking to verify the identity

Pr [X = x |Y = y] = Pr ′ ((X |Y = y) = x) .

Anyway, a random variable has an expectation, and so has X |Y = y.

E[X |Y = y] =
∑

x∈(X|Y=y)((Y=y)+)

x Pr [(X |Y = y) = x]

=
∑

x∈X(Ω+)

x Pr [X = x |Y = y] .

provided the sum exists.
In the analysis of the game with McChance, we analyzed the random variable

X for the amount we have to pay back after the experiment. Let Y be the indicator
variable for the event DD≥. Then E[X |Y = 1] = 2.5 and we calculated E[X |Y = 0] =

4.66... . The justi�cation for our �nal step in the derivation of E[X] is given in the
lemma below.
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Lemma 5 (Laws of Total Probability and Expectation) Let X and Y be
two random variables on a common probability space (Ω, Pr). Then

Pr [X = x] =
∑

y∈Y(Ω+)

Pr [X = x |Y = y] Pr [Y = y] (3)

for x ∈ R, and

E[X] =
∑

y∈Y(Ω+)

E[X |Y = y] Pr [Y = y] , (4)

provided E[X] exists.

Proof
∑

y∈Y(Ω+)

Pr [X = x |Y = y] Pr [Y = y]

=
∑

y∈Y(Ω+)

Pr [X = x ∧ Y = y]

Pr [Y = y]
Pr [Y = y]

=
∑

y∈Y(Ω+)

Pr [X = x ∧ Y = y]

= Pr [X = x]

since every elementary event ω ∈ Ω+ with X(ω) = x is mapped by Y to a unique
y ∈ Y(Ω+).

∑

y∈Y(Ω+)

E[X |Y = y] Pr [Y = y]

=
∑

y∈Y(Ω+)




∑

x∈X(Ω+)

x Pr [X = x |Y = y]


 Pr [Y = y]

=
∑

x∈X(Ω+)

x
∑

y∈Y(Ω+)

Pr [X = x |Y = y] Pr [Y = y]

=
∑

x∈X(Ω+)

x Pr [X = x]

= E[X]

In the game with McChance, we derived

E[X] = E[X |Y = 0]︸ ︷︷ ︸
70/15

Pr [Y = 0]︸ ︷︷ ︸
15/36

+ E[X |Y = 1]︸ ︷︷ ︸
5/2

Pr [Y = 1]︸ ︷︷ ︸
21/36

.
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